共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
提出了一种规则和隐马尔可夫模型相结合的音频分层分类算法,首先利用规则将新闻节目中的音频分为静音、语音和音乐三类,然后采用隐马尔可夫模型进一步将语音和音乐细分为男主持人语音、女主持人语音、交替报道、独白语音、现场语音和音乐六类。实验结果表明,男主持人语音、女主持人语音以及音乐的分类效果最好,查准率和查全率均可达90%以上;交替报道的分类性能最差,查准率为57.5%,查全率为79.3%;其他类别的分类性能居中,在70%~90%左右。与同类算法相比,该算法分类性能较高。 相似文献
5.
6.
基于单类支持向量机的音频分类 总被引:1,自引:0,他引:1
研究一种基于单类支持向量机的音频分类方法,能够使每一类样本都独立地获得一个决策函数,通过决策函数的最大值来判断样本所属的类。通过使用小波包变换提取语音特征向量,并融合多特征向量,将音频分为5类:纯语音、音乐、环境音、含背景音语音和静音。实验结果表明这种方法具有较好的分类精度,性能优于贝叶斯、隐马尔可夫模型和神经网络分类器。 相似文献
7.
在传统的隐马尔可夫模型中,模型在某状态停留一定时间的概率随着时间的增长呈指数下降的趋势。文中使用依赖于时间的状态转移概率对状态停留时间予以刻画。首先,在采用相同特征矢量下进行了修改后的隐马尔可夫模型和传统隐马尔可夫模型的比较和分析。其次,对不同特征矢量的组合进行了对比实验。另外,在进行不同参数的组合时,文中考虑了不同特征参数及其维数对观察矢量概率输出的影响。 相似文献
8.
针对机载设备的状态健康评估问题,采用隐马尔科夫模型(HMM)对其进行性能退化程度的评估;首先引入状态条件概率矢量对HMM进行不确定性改进,并推导了其表达式;其次以状态条件概率比值为基础,给出了机载设备状态等级量化分值的计算方法,并据此设计了机载设备状态健康评估流程;最后以飞机发动机温控放大器为例进行仿真验证,结果表明上述方法能够给出直观、准确的状态评估结果. 相似文献
9.
抽象出时间序列的多段线性特征,并提出一种时间序列分类算法.该算法包括3个模块:导数估值函数,线性分段方法,DDHMM模型(基于HMM).首先,利用导数估值函数与线性分段方法检测多段线性特征,若满足多线段特征,则将时间序列转化为特定结构的观察值序列;然后,利用训练观察值序列训练DDHMM模型,通过比较各模型产生测试观察值序列的概率值进行分类.实验表明,针对满足多段线性特征的时间序列,该算法具有较高的分类精度,应用在UCI数据集和实际工程中,分类效果好. 相似文献
10.
11.
隐马尔可夫模型是对DNA序列建模的一种简单且有效的模型, 实际应用中通常采用一阶隐马尔可夫模型. 然而, 由于其一阶无后效性的特点, 一阶隐马尔科夫模型无法表示非相邻碱基间的依赖关系, 从而导致序列中一些有用统计特征的丢失. 本文在分析DNA序列特有的生物学构造的基础上, 提出一种用于DNA序列分类的二阶隐马尔可夫模型, 该模型继承了一阶隐马尔可夫模型的优点, 充分表达了蕴涵在DNA序列中的生物学统计特征, 使得新模型具有明确的生物学意义. 基于新模型, 提出一种DNA序列的贝叶斯分类新方法, 并在实际DNA序列上进行了实验验证. 实验结果表明, 由于二阶隐马尔可夫模型充分反映了DNA序列碱基间的结构信息, 新方法有效地提高了序列的分类精度. 相似文献
12.
语音/音乐自动分类中的特征分析 总被引:16,自引:0,他引:16
综合分析了语音和音乐的区别性特征,包括音调,亮度,谐度等感觉特征与MFCC(Mel-Frequency Cepstral Coefficients)系数等,提出一种left-right DHMM(Discrete Hidden Markov Model)的分类器,以极大似然作为判别规则,用于语音,音乐以及它们的混合声音的分类,并且考察了上述特征集合在该分类器中的分类性能,实验结果表明,文中提出的音频特征有效,合理,分类性能较好。 相似文献
13.
基于隐马尔可夫模型的入侵检测系统 总被引:4,自引:1,他引:4
首先介绍了基于隐马尔可夫模型(HMM)的入侵检测系统(IDS)框架,然后建立了一个计算机系统运行状况的隐马尔可夫模型,最后通过实验论述了该系统的工作过程。通过仅仅考虑基于攻击域知识的特权流事件来缩短建模时间并提高性能,从而使系统更加高效。实验表明,用这种方法建模的系统在不影响检测率的情况下,比传统的用所有数据建模大大地节省了模型训练的时间,降低了误报率。因此,适合用于在计算机系统上进行实时检测。 相似文献
14.
15.
网络风险评估方法研究 总被引:8,自引:0,他引:8
为了进行网络风险评估,采用隐马尔可夫随机过程作为分析手段,以入侵检测系统的输出(报警事件)为处理对象,建立了描述主机系统受到攻击后状态转化的隐马尔可夫模型(HMM),给出了主机系统风险指数的计算方法,并经过简单叠加得到整个网络风险的定量评价。最后通过实验证实了所提出方法的有效性。 相似文献
16.
基于Multi-stream Combined隐马尔柯夫模型源端检测DDoS攻击 总被引:1,自引:0,他引:1
提出了一种新颖的综合考虑多维观测特征的DDoS攻击源端检测方法。该方法引入S-D-P特征概念,并抽取TCP/IP包头中的标志位和ID字段构成多维观测特征,采用Multi-stream Combined隐马尔可夫模型(MC-HMM)在源端网络检测DDoS攻击。大量实验表明,MC-HMM方法克服了基于一维观测特征的检测算法信息量过小的固有缺陷,能够有效降低检测的误报率和漏报率,提高DDoS攻击源端检测精度。 相似文献
17.
手语识别的研究具有重大的学术价值和广泛的应用前景.在近些年的手语识别工作中,隐马尔科夫模型(HiddenMarkov Models,简称HMMs)起到了重要的作用.基于HMM的统计框架是当前动态识别领域的主流方法,同时也是该文的研究工作的理论基础.提出将半连续隐马尔科夫模型(SCHMM)用于手语识别,在理论上证明了SCHMM优于离散隐马尔科夫模型(DHMM)和连续隐马尔科夫模型(CHMM),可以避开DHMM中因矢量量化造成的信息损失,在保证识别率的前提下降低模型的复杂性和运算量. 相似文献
18.
藏语拉萨话大词表连续语音识别声学模型研究 总被引:1,自引:0,他引:1
根据藏语的特点,提出藏语拉萨话大词表连续语音识别声学模型,利用高层次的藏语语言知识减少模式匹配的模糊性。以音素和声韵母为声学建模单元,在HTK平台上建立上下文相关的连续隐马尔可夫声学模型,以实现藏语拉萨话特定人大词表连续语音识别。实验结果表明,在最优情况下,该模型词错误率只有7.8%。 相似文献
19.
通过人走路的姿势实现对个人身份的远距离识别和认证是当前生物特征识别研究领域的一个研究热点。算法利用步态轮廓图像边界到重心的距离矢量对步态轮廓图像进行人体运动的静态形状描述,采用连续隐马尔可夫模型对人体运动时从一个动作到另一个动作的过渡进行动态描述。算法在CMU数据库上面进行实验取得了较高的正确识别率。 相似文献
20.
该文介绍了如何利用三音子模型和基频信息来提高汉语连续数字串的识别性能。三音子模型考虑了前后语音协同发音的影响,将上下文考虑到模型中去,可以更好地描述连续语音;各个音节的基频是随时间而变化的,其不同轨迹构成了声调,利用基频信息进一步提高了对汉语连续数字串的识别率。 相似文献