共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ergonomics》2012,55(5):380-398
This study evaluated spinal loads associated with lifting and hanging heavy mining cable in a variety of postures. This electrical cable can weigh up to 10 kg per metre and is often lifted in restricted spaces in underground coal mines. Seven male subjects performed eight cable lifting and hanging tasks, while trunk kinematic data and trunk muscle electromyograms (EMGs) were obtained. The eight tasks were combinations of four postures (standing, stooping, kneeling on one knee, or kneeling on both knees) and two levels of cable load (0 N or 100 N load added to the existing cable weight). An EMG-assisted model was used to calculate forces and moments acting on the lumbar spine. A two-way split-plot ANOVA showed that increased load (p<0.05) and changes in lifting posture (p<0.05) independently affected trunk muscle recruitment and spinal loading. The increase in cable load resulted in higher EMG activity of all trunk muscles and increased axial and lateral bending moments on the spine (p<0.05). Changes in posture caused more selective adjustments in muscle recruitment and affected the sagittal plane moment (p<0.05). Despite the more selective nature of trunk EMG changes due to posture, the magnitude of changes in spinal loading was often quite dramatic. However, average compression values exceeded 3400 N for all cable lifting tasks. 相似文献
2.
《Ergonomics》2012,55(5):653-668
The aim of this study was to assess the effect of an elastic lumbar back support on spinal loading and trunk, hip and knee kinematics while allowing subjects to move their feet during lifting exertions. Predicted spinal forces and moments about the L5/S1 intervertebral disc from a three-dimensional EMG-assisted biomechanical model, trunk position, velocities and accelerations, and hip and knee angles were evaluated as a function of wearing an elastic lumbar back support, while lifting two different box weights (13.6 and 22.7 kg) from two different heights (knee and 10 cm above knee height), and from two different asymmetries at the start of the lift (sagittally symmetric and 60°asymmetry). Subjects were allowed to lift using any lifting style they preferred, and were allowed to move their feet during the lifting exertion. Wearing a lumbar back support resulted in no significant differences for any measure of spinal loading as compared with the no-back support condition. However, wearing a lumbar back support resulted in a modest but significant decrease in the maximum sagittal flexion angle (36.5 to 32.7°), as well as reduction in the sagittal trunk extension velocity (47.2 to 40.2°s-1). Thus, the use of the elastic lumbar back support provided no protective effect regarding spinal loading when individuals were allowed to move their feet during a lifting exertion. 相似文献
3.
Marco J.M. Hoozemans Wilmien Slaghuis Gert S. Faber Jaap H. van Dieën 《International Journal of Industrial Ergonomics》2007,37(11-12):832
The primary objective of the present study was to quantify the relative effect of the magnitude and direction of the exerted push force and of trunk inclination on the mechanical load at the low back using a regression analysis for correlated data. In addition, we explored the effects of handle height and type of pushing activity (standing or walking) on the magnitude and direction of exerted forces, trunk inclination, and low back loading when pushing a four-wheeled cart on a treadmill. An experimental setup was designed in which nine participants pushed a four-wheeled cart on a treadmill. Kinematics and reaction forces on the hand were measured to calculate the net moment at the L5–S1 intervertebral disc. Results show that the magnitude and direction of the exerted push force and the trunk inclination significantly and independently affect low back load. It is concluded that for the ergonomic evaluation of pushing tasks, the inclination of the trunk should be considered, in addition to the magnitude and direction of exerted forces.
Relevance to industry
Pushing carts is a common activity for a considerable part of the workforce and has been associated with musculoskeletal complaints. This paper shows that not only the magnitude of exerted forces determines the low back load but also the direction of the exerted forces and the inclination of the trunk should be considered for ergonomic evaluation. 相似文献4.
《Ergonomics》2012,55(13):1365-1385
This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined with an EMG assisted trunk muscle model to quantify kinematics and low back loading in 10 subjects performing 19 different lifting movements, using 10.5 kg boxes without handles. When lifting from a 0.05 m height with the feet behind the box, squat lifting resulted in 19.9% (SD 8.7%) higher net moments (p < 0.001) and 17.0% (SD 13.2%) higher compression forces (p < 0.01) than stoop lifting. This effect was reduced to 12.8% (SD 10.7%) for moments and a non-significant 7.4% (SD 16.0%) for compression forces when lifting with the feet beside the box and it disappeared when lifting from 0.5 m height. Differences between squat and stoop lifts, as well as the interaction with lifting height, could to a large extent be explained by changes in the horizontal L5/S1 intervertebral joint position relative to the load, the upper body acceleration, and lumbar flexion. Rotating the knees outward during squat lifts resulted in moments and compression forces that were smaller than in squat lifting but larger than in stoop lifting. Shear forces were small ( < 300 N) at the L4/L5 joint and substantial (1100 – 1400 N) but unaffected by lifting technique at the L5/S1 joint. The present results show that the effects of lifting technique on low back loading depend on the task context. 相似文献
5.
The effects of speed,frequency, and load on measured hand forces for a floor to knuckle lifting task
《Ergonomics》2012,55(7-8):833-843
The purpose of this study was to describe and quantify measured hand forces during floor to knuckle lifting of various loads. Hand forces of five subjects were measured with a strain gauge apparatus for normal and fast speeds of lifting at 1,4, and 8 l/min. The pattern of hand force over time exhibited peaks in force in the shape of a spike for all fast lifts, indicating that subjects did not lift smoothly. For normal speed of lift, only one of the five subjects executed some lifts smoothly, indicating that it may be possible to lift smoothly, but most lifters probably do not. Peaks of horizontal and vertical components of hand force were tabulated by speed of lift, frequency, and load. 相似文献
6.
《Ergonomics》2012,55(12):2095-2103
The purpose of this study was to determine if a change in forward head posture and occipital extension occurred in participants who wore multifocal lenses vs. those persons with non-multifocal lenses while performing an 8-min visual reading task on a visual display unit (VDU). Forty-two healthy human participants were recruited for this study. Thirty-three participants completed the study. Fourteen participants wore multifocal lenses and 19 wore frames with non-multifocal lenses. To evaluate the degree of change of forward head posture and occipital extension digital photographs of cervical posture were taken at four different time intervals: prior to performing the reading task and at 3, 5 and 8 min during the reading task. The digital photographs were analysed utilizing a computer program. Two one-way ANOVA were utilized to determine the degree of change of forward head posture and occipital extension between groups. A significant difference was identified between groups for changes in degrees of forward head posture while performing a visual reading task on a VDU. However, no significant difference between groups was found for occipital extension while performing the same task. Multifocal wearers exhibit greater degrees of change in forward head posture and occipital extension than non-multifocal wearers. These postural changes may place them at a greater risk for musculoskeletal disorders and headaches. 相似文献
7.
《Ergonomics》2012,55(3):296-306
The purpose of this study was to examine muscle activity patterns during patient handling during manual transfers, and transfers using floor and ceiling lifts. EMG patterns during transfers from bed to wheelchair and wheelchair to bed as well as patient repositioning in novices and experienced participants were examined. Surface EMG was recorded from the upper and lower erector spinae, latissimus dorsi and trapezius muscles bilaterally. Overall, normalized mean and peak muscle activity were lowest using the ceiling lift, increasing with the floor lift, which were lower than manual transfers (novices: all p?<?0.01). Experienced patient handlers demonstrated approximately two times greater trapezius and latissimus dorsi activity than novices, combined with lower mean erector spinae activity (p?<?0.05, for most tasks). Integrated EMG for all muscles was directly proportional to the transfer time and was lowest during the manual transfer followed by the ceiling lift, with the floor lift being highest. The difference between the muscle activity patterns between the experienced and novice patient handlers may suggest a learned behaviour to protect the spine by distributing load to the shoulder. Further examination of the muscle activation patterns differences between experience levels could improve training techniques to develop better patient handling strategies. 相似文献
8.
This study investigated the effect of a school-based ergonomic intervention on childrens’ posture and discomfort while using computers using a pre/post test study design. The sample comprised 23 children age 9 and 10 years. Posture was assessed with Rapid Upper Limb Assessment (RULA) and a workstation assessment was completed using a Visual Display Unit (VDU) checklist. Self reported discomfort was also recorded at the beginning and end of the computer class. Following an ergonomic intervention that included education of the children and workstation changes, the outcome measures were repeated. There was a positive response to the intervention with significant changes between the pre-intervention and post-intervention scores for posture (p = 0.00) and workstation (p = 0.00). The change in discomfort scores from beginning to end of the computer class between the pre-intervention class and the post-intervention class was also significant (p = 0.00). The study highlights the need for continuing concern about the physical effects of children’s computer use and the implications of school-based interventions. 相似文献
9.
Effects of the abdominal belt on muscle-generated spinal stability and L4/L5 joint compression force
《Ergonomics》2012,55(7):501-513
The goals of this study were (1) to determine the effects of abdominal belts on muscle-generated active lumbar spine stability, (2) to determine their effect on the subsequent joint compression force at L4/L5 and (3) to determine whether the effective stability of the spine could be predicted by the active spine stability and belt condition. Electromyographic (EMG) and trunk stiffness data from a previously reported experiment in which 10 subjects performed quick-release tasks (pertubation) with and without an abdominal belt were used as inputs to biomechanical models to estimate the active spine stability and effective stability of the spine, respectively. The subjects exerted isometric trunk flexion, extension and lateral bending trials at 0 and 80% of maximum intra-abdominal pressure when the resisted force was suddenly released. Wearing an abdominal belt had no significant effect on either the muscle-generated lumbar spine stability or the L4/L5 joint compression force in any direction. The effective stability of the spine was adequately predicted by the active spine stability and the effect of the belt, which accounted for approximately 34% of the effective spine stability. The study demonstrated that the abdominal belt contributed to the passive stability of the lumbar spine and did not change the active stability for tests performed within the same experimental session. 相似文献
10.
Tilak Dutta Pamela J. Holliday Susan M. Gorski Mohammad S. Baharvandy Geoff R. Fernie 《International Journal of Industrial Ergonomics》2011,41(6):653-660
This study investigated the effects of caregiver experience on peak external forces and moments generated at the L5/S1 joint of the low back when maneuvering loaded floor-based and overhead-mounted patient lifting devices. Twenty caregivers were divided into more-experienced and less-experienced groups based on the product of two factors: their years of lifting experience and the frequency of lifting the caregivers had done in the past. Ground reaction forces and moments as well as motion capture data were recorded while caregivers performed five different maneuvering tasks with both lifts in each of three conditions (caregiver subjects worked alone, as the primary caregiver in a pair, and as the secondary caregiver in a pair). Six outcome measures (net external forces and moments at the L5/S1 joint) were recorded. Multivariate analyses of variance of all net external forces and moments were done separately for the floor and overhead lifts. A significant effect of experience level was found for the floor lift (p = 0.006) but not for the overhead lift (p = 0.163). A follow-up univariate analysis of floor lift activities found significant differences between more-experienced and less-experienced caregivers for Turn, Push and Legs Up activities.
Relevance to industry
Previous work has shown that overhead lifts reduce the loads on caregivers compared to floor lifts. The findings of this study further underscore the need to purchase overhead lifts to protect less-experienced caregivers (including informal family caregivers) who are at increased risk of back injury when maneuvering floor lifts. 相似文献11.
《Ergonomics》2012,55(9):860-873
Poor posture has been suggested as one of the main factors contributing to the high prevalence of neck pain in video display unit (VDU) users, but no clear association between pain and any particular resting neck posture has been found. Postural awareness of the neck, as indicated by the repositioning accuracy, may therefore be an appropriate measure and potentially useful assessment tool. The objective of this study is to examine whether posture and fatigue affect the head repositioning ability in typical VDU usage. A group of 20 healthy participants reproduced a normal comfortable posture for forward, upright and backward chair back inclinations in random order both before and after fatigue of the upper trapezius muscles. Ten repetitions of the posture were recorded for 2 s each, and the angular and translational deviations from the original head position were measured with regard to the external environment (head in space repositioning) and with regard to the trunk (head on trunk repositioning). Analysis by repeated measures ANOVA showed significant effects and interactions of fatigue and chair back inclination on the repositioning errors in the sagittal plane, which typically showed systematic trends towards certain postures rather than random errors around a mean position. While further work is required to examine the ergonomic impact of impaired repositioning ability, head repositioning is sensitive to ergonomic factors such as seating configuration and fatigue, and may therefore be a useful tool for evaluation of static working postures. 相似文献
12.
13.
《Ergonomics》2012,55(11):1208-1225
Previous research has classified the occupation of sheep shearing as heavy work where shearers flex their spine and hips for long periods of time, handle awkward loads and expend high amounts of energy. The aim of this research was to investigate the magnitude of spinal forces produced during the shearing phase of the work and to determine whether the use of a commercially available back support harness would reduce these forces. Following discussion on task complexity and risk of back injury with senior shearing instructors, three component tasks of the shearing phase were identified as posing high risk of injury and were prioritized for primary analysis. Although the dragging out of a sheep in preparation for shearing and an unexpected loss of animal control were also identified as being of high risk, technological and instrumentation difficulties precluded their analysis. Twelve experienced shearers were videotaped while shearing with and without the use of a back harness. Surface mounted retro-reflective markers placed on the trunk defined three linked segments: Pelvis, Lumbar and Head, Arms, and Upper Trunk (HAUT). A 3D, link segment, top down, inverse dynamics approach was used to describe the motion and to estimate forces involved during the identified tasks of shearing. The spinal force/time profiles of this sample of shearers demonstrated large compressive and shear forces for all three tasks that are close to the NIOSH and University of Waterloo action limits for compressive and shear forces respectively (McGill , Yingling and McGill , Marras ). The use of the back support harness reduced these forces by substantial and statistically significant amounts. This effect was consistent across all three tasks. The results of this study demonstrate the production of high levels of compressive and shear forces within the spine of shearers during the three shearing tasks studied and that the use of a back support harness can substantially reduce these forces. Therefore the use of a back harness may reduce the cumulative load on the spine during shearing thereby moderating damage to the articular structures. However it is not known whether the harness would protect the spine from a sudden or unexpected force. 相似文献
14.
Despite the high level of automation in semiconductor manufacturing processes, many manual operations are still involved in the workplace. Due to inadequate human–machine interface design, stairs are frequently used to help operators perform wafer-handling tasks. This study was designed to evaluate the effects of climbing stairs and carrying wafer containers (pods) on psychophysical responses (maximal acceptable weight of lift—MAWL, and ratings of perceived exertion—RPE), physiological responses (oxygen consumption—VO2, and heart rate—HR), and wrist posture (ulnar and radial deviations). Each of 12 subjects (six males and six females) performed six sessions (3 climbing stairs×2 pods types). The results indicate that climbing stairs had a significant influence on MAWL and VO2 (p<0.01). The type of pod effect on wrist posture was significant (p<0.01). Gender effect differences on MAWL, VO2 and wrist posture were also significant (p<0.05). Job design implications are discussed. 相似文献
15.
The objective of this study is to design a fuzzy expert system for performance assessment of health, safety, environment (HSE) and ergonomics system factors in a gas refinery. This will lead to a robust control system for continuous assessment and improvement of HSE and ergonomics performance. The importance of this study stems from the current lack of formal integrated methodologies for interpreting and evaluating performance data for HSE and ergonomics. Three important reasons to use fuzzy expert systems are (1) reduction of human error, (2) creation of expert knowledge and (3) interpretation of large amount of vague data. To achieve the objective of this study, standard indicators and technical tolerances for assessment of HSE and ergonomics factors are identified. Then, data is collected for all indicators and consequently, for each indicator four conditions are defined as “acceptance”, “low deviation”, “mid deviation” and “high deviation”. A membership function is defined for each fuzzy condition (set) because an indicator cannot be allocated to just one of the above conditions. The expert system uses fuzzy rules, which are structured with Data Engine. Previous studies have introduced HSE expert system whereas this study introduces an integrated HSE and ergonomics expert system through fuzzy logic. 相似文献
16.
Occupational kneeling is associated with an increased risk for tibiofemoral knee osteoarthritis. Forces on the knee in the kneeling posture, as well as the greater incidence of meniscus tears among workers, likely contribute to the increased risk. We hypothesise that an additional mechanism may contribute – altered neuromuscular control due to prolonged high knee flexion. Forty participants (20 male, 20 female) completed an evaluation of gait and squatting before, immediately following, and 30 min following a 30 min simulated occupational kneeling exposure. An increase in the peak external knee adduction moment and a delay in vastus medialis activation onset during walking were observed post-kneeling, as well as increased frontal plane knee motion during squatting. This was the first investigation to find changes in high flexion transitions as a result of kneeling. Greater frontal plane knee motion may increase the risk for meniscal tears, and subsequently, knee osteoarthritis.
Practitioner Summary: A 30 min simulated occupational kneeling exposure resulted in small but significant gait changes. The greatest effect was on frontal plane knee movement during squatting, which is especially relevant to occupations requiring frequent kneeling/squatting. This increased motion may indicate an increased risk of injury, which supports a link to knee osteoarthritis. 相似文献
17.
《Ergonomics》2012,55(6):646-659
There are many work environments that require workers to perform manual materials handling tasks on ground surfaces that are not perfectly flat (e.g. in agriculture, construction, and maritime workplaces). These sloped ground surfaces may have an impact on the lifting strategy/technique employed by the lifter, which may, in turn, alter the biomechanical loading of the spine. Describing the changes in kinematics and kinetics of the torso is the first step in assessing the impact of these changes and is the focus of the current research. Subjects' whole-body motions were recorded as they lifted a 10 kg box while standing on two inclined surfaces (facing an upward slope: 10° and 20°), two declined surfaces (facing a downward slope: ? 10° and ? 20°), and a flat surface (0°) using three lifting techniques (leg lift, back lift and freestyle lift). These data were then used in a two-dimensional, five-segment dynamic biomechanical model (top-down) to evaluate the effect of these slopes on the net moment about the L5/S1 joint. The results of this study showed an interesting interaction effect wherein the net L5/S1 moment was relatively insensitive to changes in slope angle under the back lift condition, but showed a significant effect during the leg lift and freestyle lifting conditions. The results show that under the freestyle lifting condition the peak L5/S1 moment was significantly higher for the inclined surfaces as compared to the flat surfaces (6.8% greater) or declined surfaces (10.0% greater). Subsequent component analysis revealed that both trunk flexion angle and angular trunk acceleration were driving this response. Collectively, the results of this study indicate that ground slope angle does influence the lifting kinematics and kinetics and therefore needs to be considered when evaluating risk of low back injury in these working conditions. 相似文献
18.
Forearm support during keyboard use has been reported to reduce neck and shoulder muscle activity and discomfort. However, the effect of forearm support on wrist posture has not been examined. The aim of this study was to examine the effect of 3 different postures during keyboard use: forearm support, wrist support and "floating". The floating posture (no support) was used as the reference condition. A wrist rest was present in all test conditions. Thirteen participants completed 20 min wordprocessing tasks in each of the test conditions. Electromyography was used to monitor neck, shoulder and forearm muscle activity. Bilateral and overhead video cameras recorded left and right wrist extension, shoulder and elbow flexion and radial and ulnar deviation. The forearm support condition resulted in significantly less ulnar deviation (p < or = 0.007), less time spent in extreme ulnar deviation (p = 0.002) and less reports of discomfort than the "floating" condition (p = 0.002). The wrist support but not the forearm support condition resulted in less trapezius and anterior deltoid muscular activity (p < 0.007). These findings indicate that typing with upper extremity support in conjunction with a wrist rest may be preferable to the "floating" posture implicit in current guidelines. 相似文献
19.
《Ergonomics》2012,55(12):1207-1213
Thirteen male children ascending and descending stairs with loads that equalled 0%, 10%, 15% and 20% of their body weight were the subject of our research: the boys were wearing an asymmetrical single-strap athletic bag or a symmetrical double-strap backpack during our experiments with them. The maximum spinal tilt to the loading side and to the support side, and the range of spinal motions, were obtained by using a motion analysis system. Our results showed that symmetry of spinal posture was observed both when they ascended staircase with all loads and descended in a backpack. When carrying an athletic bag with 15% and 20% of their body weight while ascending the staircase, the lateral spinal tilt to the supporting side was significantly increased. We concluded that a symmetrical backpack with a load not exceeding 20% or an asymmetrical single-strap athletic bag with a load not exceeding 10% should be recommended for school children in order to promote safer staircase use. Statement of Relevance: Children carrying heavy school bags may develop spinal problems. This study suggested that when they are using stairs, a symmetrical backpack with a load within 20% body weight is acceptable for them. When they are carrying an asymmetrical single-strap athletic bag, the bag's weight should not exceed 10% of the body weight in order to avoid excessive spinal tilt. 相似文献
20.
Becker M Rothman J Nelson AJ Freedland R Garcia D Feit L Barth J Sabini R 《Ergonomics》2007,50(12):2095-2103
The purpose of this study was to determine if a change in forward head posture and occipital extension occurred in participants who wore multifocal lenses vs. those persons with non-multifocal lenses while performing an 8-min visual reading task on a visual display unit (VDU). Forty-two healthy human participants were recruited for this study. Thirty-three participants completed the study. Fourteen participants wore multifocal lenses and 19 wore frames with non-multifocal lenses. To evaluate the degree of change of forward head posture and occipital extension digital photographs of cervical posture were taken at four different time intervals: prior to performing the reading task and at 3, 5 and 8 min during the reading task. The digital photographs were analysed utilizing a computer program. Two one-way ANOVA were utilized to determine the degree of change of forward head posture and occipital extension between groups. A significant difference was identified between groups for changes in degrees of forward head posture while performing a visual reading task on a VDU. However, no significant difference between groups was found for occipital extension while performing the same task. Multifocal wearers exhibit greater degrees of change in forward head posture and occipital extension than non-multifocal wearers. These postural changes may place them at a greater risk for musculoskeletal disorders and headaches. 相似文献