首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation of the friction of WC/DLC solid lubricating films in vacuum   总被引:1,自引:0,他引:1  
The accuracy of nanopositioning is to a large extent limited by the friction-caused errors, particularly in vacuum environments. An investigation of the friction behaviour of sp2-bonds dominating diamond like carbon (DLC) coatings and WC1−x/DLC, WC(N)/DLC multilayer coatings, which are considered to be used in nanopositioning in vacuum, have been performed by a vacuum microtribometer. By using an atomically smooth Si sphere as a counterface, the reciprocating sliding friction was measured at a normal load <5 mN, and running speed at a 1–100 μm/s in ambient air and in ultra high vacuum (UHV) at 10−7 Pa, and correlated with microstructures and properties of the coatings. When tested in UHV, the coefficient of friction (COF) for pure DLC coatings (thickness: 700 nm) changes significantly between 0.2 and 0.4. Once the thickness of DLC layers is limited to 5 nm by formation of multilayer coatings, the COF in UHV decreases by nearly one order to 0.02–0.05. We suggest that the deformation of DLC films and the transfer films determines COF. Thick DLC coatings can induce more plastic deformation and consumes more energy in sliding resulting in a high COF. Thickening of the transfer film in running leads to a continuous decrease of COF since the deformation of the transfer films turns easier. The low COF of multilayer coatings is mainly due to their confinement of the thickness of DLC films. A consistent velocity-strengthening frictional behaviour of both WC1−x/DLC and WC(N)/DLC coatings in UHV indicates that the transfer films acting as a thin layer of granular material. Further study of the friction behaviour with the presence of such granular materials might be interesting for the further development of tribological coatings for vacuum applications.  相似文献   

2.
500 nm-thick films are deposited on austenitic stainless steel by neutral (Ar+) or reactive (N+) ion beam sputtering of Ni or NiTi targets, with (or without) high energy 160 keV-Ar+ ion beam assistance. Most of the time the coatings are nanocrystalline and induce a large (excellent in some conditions) increase of the wear resistance. Only Ar+ ion beam sputtering of a NiTi target gives an amorphous deposit which does not improve the substrate tribological properties. The hardness and wear resistance of ion beam assisted films are larger than those obtained with non-ion beam assisted coatings. The presence of a hard TiN phase inside a ductile Ni phase, of grains with preferential orientation beneficial to slip, as well as film densification are the main factors which increase the wear resistance. The best results are obtained when the structure is composed of two phases, Ni and TiN. The TiN phase strengthens the already good tribological Ni properties and the Ni ductility induces mechanical accommodation during the friction process.  相似文献   

3.
采用氧-乙炔火焰喷熔工艺,制备了碳化钨颗粒增强镍基合金喷熔层(NiCrBSi/WC),研究了它在腐蚀介质条件下的摩擦磨损行为与机理,并考察了载荷、滑动速度对其摩擦磨损性能的影响规律。研究结果表明:NiCrBSi/WC具有良好的耐腐蚀磨损性能,且当WC含量为20%时,腐蚀磨损率最低;WC含量超过20%后,由于喷熔层存在“腐蚀原电池”效应,其腐蚀磨损率增大。NiCrBSi/WC的腐蚀磨损率随载荷增加而变大,随速度增大而减小。载荷的增加使喷熔层的犁削磨损加剧,导致摩擦系数和磨损率增大;速度的增大造成摩擦界面温度上升,可生成摩擦转移膜,从而降低了喷熔层的磨损率。  相似文献   

4.
Friction performance of electroless Ni‐B coatings sliding against steel is experimentally investigated in this paper. Friction performance is measured in terms of coefficient of friction (COF) for varying tribological testing parameters such as load, speed and time. Taguchi‐based optimisation of the testing parameters is attempted to find the optimal combination of testing parameters for minimum COF. An analysis of variance reveals that all the testing parameters have significant influence on the friction performance of the coating. Also, the interaction between load and speed is found to affect the friction more compared with the rest of the interactions. The coating characterisation is done with the help of scanning electron microscopy (SEM), energy dispersive X‐ray and X‐ray diffraction analysis. It is found that the Ni‐B coating is amorphous in the as‐deposited condition but gradually turns crystalline with heat treatment. The sliding tracks observed with SEM showed that abrasive failure is the predominant wear mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

6.
It is often beneficial to modify surfaces to gain desirable properties such as improved wear and friction resistance. Self-lubricating coatings can improve the performance of contacting surfaces and extend component lifetimes by reducing the coefficient of friction and/or improving resistance to specific wear modes. With these goals in mind, self-lubricating coatings of hexagonal boron nitride (hBN) particles in a deposited nickel matrix were investigated and optimized for friction and wear. These self-lubricating coatings were created via high-velocity particle consolidation or cold spray using micrometer-sized hBN powder encapsulated by nickel and nickel phosphorous alloys. Relatively thick nickel encapsulation via electrolesss Ni plating was required to aid in coating bonding/formation by “tricking” the hBN into acting as monolithic Ni during deposition. Once deposited on aluminum substrates, the coatings were analyzed and found to exhibit enhanced mechanical and tribological properties such as high bond strength and microhardness, a relatively low coefficient of friction, and improved reciprocating wear behavior relative to pure cold-sprayed Ni coatings. Furthermore, the encapsulation process was found to be both scalable and amenable to relatively small hBN particles.  相似文献   

7.
Fe–Ni–RE self-fluxing alloy powders were flame sprayed onto 1045 carbon steel. The tribological properties of Fe–Ni–RE alloy coatings under dry sliding against SAE52100 steel at ambient conditions were studied on an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. Effects of load and sliding speed on tribological properties of the Fe–Ni–RE coatings were investigated. The worn surfaces of the Fe–Ni–RE alloy coatings were examined with a scanning electron microscopy(SEM) and an energy-dispersive spectroscopy(EDS). It was found that the Fe–Ni–RE alloy coatings had better wear resistance than the SAE52100 steel. An adhered oxide debris layer was formed on the worn surface in friction. Area of the friction layer varied with variety of sliding speed, but did not vary with load. The oxide layer contributed to decreased wear, but increased friction. Wear rate of the material increased with the load, but dramatically decreased at first and then slightly decreased the sliding speed. The friction coefficient of the material was 0.40-0.58, and decreased slightly with the load, but increased with sliding speed at first, and then tended to be a constant value. Wear mechanism of the coatings was oxidation wear and a large amount of counterpart material was transferred to the coatings.  相似文献   

8.
Rolf Waesche  Manfred Hartelt 《Wear》2009,267(12):2208-825
The high temperature tribological performance of tetrahedral amorphous carbon coatings has been analyzed at elevated temperatures up to 250 °C in air against three different counterbody materials—steel 100Cr6, α-alumina and silicon nitride. The results show that the counterbody material influences the friction and wear behavior and therefore coating life time strongly. This effect is well known for these coatings at room temperature under dry environmental conditions, equivalent to conditions above 100 °C when water molecules desorb from the surface. However, the sharp difference in tribological performance between silicon nitride on the one hand and alumina and steel on the other hand cannot be understood in this context. Analyzing the friction behavior during the running-in phase, it is evident that only alumina and steel form a stable interface with constant low friction and relatively low wear rates. Silicon nitride forms an unstable interface with fluctuating COF and relatively high wear rates due to its own inherent tendency to tribo-oxidation.  相似文献   

9.
为研究不同基体材料对CrN/CrCN多层涂层在海水环境下摩擦学性能的影响,采用多弧离子镀技术在H65铜合金、TC4钛合金和316L不锈钢基体上沉积CrN和CrN/CrCN多层复合涂层,通过XRD、SEM等技术对涂层的结构进行表征,通过结合力、硬度测试和摩擦磨损试验分析涂层在大气环境和海水环境下的力学性能和摩擦学性能。结果表明:CrN/CrCN多层涂层的内应力相对于CrN明显减小,且硬度相对CrN涂层较高;TC4钛合金为基体的涂层结合力较好且涂层硬度较高;在海水环境下涂层的摩擦因数相对于大气环境都有较大幅度下降,其中,以TC4钛合金和316L不锈钢为基体的涂层摩擦因数较小;以H65铜合金为基体的2种涂层在海水中的磨损率高于大气中,而以TC4合金、316L不锈钢为基体的CrN/CrCN多层涂层在海水环境下的磨损率低于大气环境;TC4钛合金为基体的CrN/CrCN多层涂层在海水环境下具有最低的磨损率,表明TC4钛合金更适合作为海水环境下CrN/CrCN多层涂层耐磨的基体材料。  相似文献   

10.
This study investigates W/WCN coatings grown by means of a repetitive pulsed vacuum arc discharge while varying the substrate temperature from room temperature (RT) to 200 °C. The coatings were grown using a cathode with W (6N) and WC (6N) targets for the W and WCN layers, respectively, and an anode that contains stainless-steel 304 as a substrate. The films grown at RT and at 150 °C possessed a lower percentage of carbon obtained from energy dispersive spectroscopy. This characteristic was related to the hardness, the coefficient of friction and the adherence. These films also possessed the best mechanical and tribological properties. Several wear mechanisms were identified, such as delamination and plowing out of abrasive and adhesive particles.  相似文献   

11.
Abstract

Increased concerns about environmental damage caused by many lubricants, has created a growing worldwide trend of promoting new environmentally friendly lubricants. The tribological characteristics of aloe mucilage as a kind of original biolubricant have been investigated in the present work. The experimental results indicate that the variation of the film thickness of aloe mucilage is not the same as that in traditional elastohydrodynamic lubrication, but conforms to the lubrication regime of thin film lubrication under the present experimental conditions. The coefficient of friction (COF) of the aloe mucilage among different tribological pairs is significantly decreased by the increase in velocity, while there is little variation when the normal load is increased. The COF of aloe mucilage between WC and DLC surfaces is very small with a value of 0˙04, and the wear resistance of the aloe mucilage between WC/DLC is better than that between WC/Si and WC/steel.  相似文献   

12.
《Wear》2007,262(7-8):765-771
Nano-Si3N4 particles were electrodeposited with nickel on copper substrate from a Ni bath. The friction and wear properties of the Ni/Si3N4 composite coating were evaluated while being lubricated with several various oils using a ball-on-disk sliding tester. The morphologies of the worn surfaces were observed using a scanning electron microscope. The chemical states of several typical elements on the worn surfaces were examined by means of X-ray photoelectron spectroscopy (XPS). Results indicated that the electrodeposited Ni/Si3N4 composition coating had excellent tribological properties while being lubricated with the ionic liquid. This was partly attributed to the high hardness of the electrodeposited nickel composite coating containing nano-sized Si3N4 and the tribochemical reaction between the lubricant and the sliding surface.  相似文献   

13.
This article deals with the rubber-based friction materials (RBFMs) which can be used in brake system. The physico-mechanical and tribological properties of a series of fiber filled RBFMs containing steel wool and aramid pulp at different concentrations along with a fiber-free reference material were characterized. Rubber–glass transition induced at higher sliding velocities was identified based on the friction fade behavior of the RBFMs. The rubber–glass transition which is inherently originated by viscoelastic response of polymeric binder was found to be influential on the tribological properties of the RBFMs. It was revealed that steel wool increased coefficient of friction (COF) and improved friction recovery behavior at low volume percent (7.5 vol.%) but it aggravated the COF at high concentration of steel wool (15 vol.%) and severe sliding conditions because of harsh abrasive mechanism. Aramid pulp improved the fade behavior at high sliding velocities and increased COF due to formation of sticky contact patches. It was revealed that steel wool increased the wear rate while aramid pulp did not affect the wear rate significantly, contrary to the increase in the friction coefficient of RBFM. SEM analysis was proved to be useful in correlating the wear rates of composites to the topographical changes on the worn surfaces.  相似文献   

14.
电沉积纳米晶材料摩擦学尺寸效应研究   总被引:3,自引:0,他引:3  
采用脉冲电沉积法制备了不同晶粒尺寸的纳米晶镍材料,实现了纳米晶粒的有效可控。考察了晶粒尺寸对纳米晶镍材料摩擦磨损性能的影响。结果表明:粗晶镍呈现严重的粘着磨损,随着晶粒的细化,硬度和强度的增加显著提高了镀层的抗塑性变形和抗粘着磨损的能力。电沉积镍具有明显的摩擦学尺寸效应,随着晶粒尺寸的减小,镍的磨损机制由粘着磨损逐渐转变为微磨粒磨损和氧化磨损,其摩擦因数逐渐降低,耐磨性显著增强。  相似文献   

15.
镍基Si3N4复合镀层的摩擦磨损特性   总被引:3,自引:0,他引:3  
通过复合电镀法制备了N i-Si3N4和N i-P-Si3N4两种复合镀层,分别与热处理45#钢组成摩擦副,进行环-环摩擦磨损试验,测试了摩擦因数和磨损量,并观察了磨损表面形貌,探讨了摩擦副的摩擦磨损机理。结果表明,N i-P-Si3N4/45#钢摩擦副的摩擦因数较小,磨损量低,具有良好的减摩耐磨性能。镀层基体的性能明显影响复合镀层的摩擦磨损性能。磨料磨损是N i-Si3N4/45#钢摩擦副的主要磨损形式,导致45#钢的磨损量增大;N i-P-Si3N4镀层对Si3N4颗粒具有良好的把持力,避免了磨料磨损的产生,摩擦副处于稳定的边界润滑摩擦状态。  相似文献   

16.
The present study evaluates the tribological properties of boride layers on the surface of AISI 4140 steel, formed using the pack-boriding method. Commercial EKabor®2 was used as the boronizing agent and the treatment was carried out at 900, 950, 1000, and 1050 °C for 2, 4, and 6 h, respectively. X-ray diffraction (XRD), scanning electron microscopy (SEM), and microhardness tests were used to characterize the phase composition, microstructure, and local hardness, respectively, of the borided steel samples. Block-on-disc tests were used to investigate tribological properties. Abrasive wear tests were carried out using emery paper at a fixed sliding speed and three different loads. Adhesive wear tests were executed against AISI 52100 steel at a fixed load and distance. The coefficient of friction values (COF) of the samples were determined simultaneously during the tests. The weight loss and COF of the borided samples were compared with untreated samples and the results suggest that both wear resistance and friction properties of the AISI 4140 steel improve with boriding.  相似文献   

17.
The tribological behavior of electrodeposited Zn–Ni alloy coatings was investigated for its suitability to replace Zn- and Cd-based coatings. An in situ tribometry technique with a transparent sapphire hemisphere as a counter face on a pin on flat tribometer was utilized to examine the contribution of third bodies in friction and wear behavior. Wear mechanisms and tribo/transfer film morphology were also studied with the X-ray diffraction and electron microscopy. In situ tribometry and additional ex situ analyses revealed that Zn–Ni coatings had superior resistance to adhesive wear compared to cadmium coatings. Microhardness of Zn–Ni coatings was higher than Zn and Cd coatings. Hardness on the wear track of Zn–Ni coatings showed the formation of a strain hardened tribo layer.  相似文献   

18.
In a cryogenic environment, components like bearings with interacting surfaces in relative motion (tribosystems) often generate undesired heat and experience high wear. Because the properties of conventional bearing materials like stainless steel cannot be applied to this temperature range, the PVD coating based on metal–metal pairs with better frictional properties must be employed. To test the suitability of the Ni–Cu–Ag-based PVD coatings of hybrid bearings for liquid rocket engine turbopumps and to obtain reliable coating material data in the extreme environment, the tribological behaviors of coatings under the cryogenic fluid (liquid oxygen and liquid nitrogen) and water lubricated conditions are studied, respectively. In the paper, the specimens are in a vibrocryotribometer with the ball-on-plane contact type, and various running conditions in terms of lubricants, contacting loading, and contacting velocity are examined. The simulated experiment for testing the actual tribological performance of Ni–Cu–Ag-based PVD coatings for hybrid bearings is tested. The results of the tests indicate that the coatings can be suitable for cryogenic tribosystems of turbopumps. In the cryogenic environment, the volume wear rate of coatings increases rapidly with the contacting loading, but 15 min later, the volume wear volume of coatings turns into 2.5–15×10−4 mm3. Besides, under the liquid oxygen condition in simulating the liquid rocket engine turbopumps environment, the friction coefficients are 0.03–0.1.  相似文献   

19.
The aim of the present investigation was to obtain some further understanding of the mechanism responsible for low-friction behaviour of W-containing DLC coatings (W-DLC) when lubricated with EP additivated oil. Boundary lubricated wear and friction tests were performed under reciprocating sliding motion using a high frequency test rig and a contact pressure of 1.5 GPa. Additionally, some of the tests were performed in a load-scanning reciprocating test rig, with the contact pressure being in the range from 2.4 to 5.6 GPa. The influence of concentration of a sulphur-based EP additive on the friction behaviour was investigated.This investigation showed that W-DLC coatings greatly improve the tribological properties of boundary-lubricated surfaces, especially when pairing coated and uncoated steel surfaces. The improved tribological behaviour was found to be governed by the gradual formation of a WS2 type tribofilm on the steel counter-face or on revealed steel substrate. The friction level depends on the additive concentration.  相似文献   

20.
巴基管粒度对其复合镀层摩擦学性能影响的研究   总被引:4,自引:0,他引:4  
用无电解复合镀方法,在45号钢基体上镀了一层镍-磷-巴基管复合镀层。本文详细实验研究了粒度对镍-磷-巴基管复合镀层摩擦学性能的影响。结果表明:巴基管复合镀层具有极优的摩擦学性能,而且巴基管的粒径愈小,复合镀层的摩擦学性能则愈优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号