首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors have conducted measurements of liquid–vapor behavior in the vicinity of a heating surface for saturated and subcooled pool boiling on an upward-facing copper surface by using a conductance probe method. A previous paper [A. Ono, H. Sakashita, Liquid–vapor structure near heating surface at high heat flux in subcooled pool boiling, Int. J. Heat Mass Transfer 50 (2007) 3481–3489] reported that thicknesses of a liquid rich layer (a so-called macrolayer) forming in subcooled boiling are comparable to or thicker than those formed near the critical heat flux (CHF) in saturated boiling. This paper examines the dryout behavior of the heating surface by utilizing the feature that a thin conductance probe placed very close to the heating surface can detect the formation and dryout of the macrolayer. It was found that the dryout of the macrolayer formed beneath a vapor mass occurs in the latter half of the hovering period of the vapor mass. Two-dimensional measurements conducted at 121 grid points in a 1-mm × 1-mm area at the center of the heating surface showed that the dryout commences at specific areas and spreads over the heating surface as the heat flux approaches the CHF. Furthermore, transient measurements of wall void fractions from nucleate boiling to transition boiling were conducted under the transient heating mode, showing that the wall void fraction has small values (<10%) in the nucleate boiling region, and then steeply increases in the transition boiling region. These findings strongly suggest that the macrolayer dryout model is the most appropriate model of the CHF for saturated and subcooled pool boiling of water on upward facing copper surfaces.  相似文献   

2.
Liquid–vapor behavior close to a heating surface was measured using two conductance probes with tip diameters smaller than 5 μm. Measurements were carried out for water boiling on an upward-facing copper surface under subcooling from 0 to 30 K. The probe signals and the void fraction distributions showed that there is little difference in the liquid–vapor structure beneath large vapor masses in saturated and subcooled boiling, that a macrolayer remains on the heating surface, and that in subcooled boiling it does not dry out even at heat fluxes far higher than CHF for saturated boiling. The thickness of the macrolayer forming beneath large vapor masses was determined from the location where the probe signals corresponding to the large vapor masses disappear. It was found that the thicknesses of the macrolayer formed in subcooled boiling are comparable to or thicker than those near the CHF in saturated boiling, and it is considered that this is most likely to be one of the causes why the CHF increases with the increasing subcooling.  相似文献   

3.
The drying process of a macrolayer on a 15 mm diameter boiling surface was observed with high speed video in the region of nucleate and of transition boiling close to the critical heat flux (CHF). It was found that the macrolayer rests beneath a large vapor mass. It partially dries in nucleate boiling and completely dries in transition boiling at the detachment of the vapor mass. The macrolayer thickness at CHF and in transition boiling was determined on the basis of the energy balance relation proposed by Katto and Yokoya. The macrolayer thickness at low heat flux was obtained by decreasing CHF with downward-facing heating surfaces and agreed well with the correlation proposed previously by the present authors. The macrolayer thickness in transition boiling with a vertical surface also agrees fairly well with the correlation, when the heat flux at macrolayer formation, given on the nucleate boiling curve, is extrapolated to surface superheat of transition boiling and when the surface temperature at macrolayer formation is equal to a time-averaged value. © 1998 Scripta Technical, Heat Trans Jpn Res, 27(2): 155–168, 1998  相似文献   

4.
Heat removal of more than 10 MW/m2 in heat flux has been required in high‐heat‐generation equipment in nuclear fusion reactors. In some conditions of water subcooling and velocity, there appears an extraordinary high heat flux boiling in the transition boiling region. This boiling regime is called micro‐bubble emission boiling (MEB) because many micro‐bubbles are spouted from the heat transfer surface accompanying a huge sound. The study intent is to obtain heat transfer performance of MEB in horizontal and vertical heated surfaces to parallel flow of subcooled water, comparing with CHF of this system. Three types of MEB with different heat transfer performance and bubble behavior are observed according to the flow velocity and liquid subcooling. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(2): 130–140, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10077  相似文献   

5.
Forced convection boiling of subcooled water was performed in a horizontal rectangular channel with the heated surface on the bottom. The experiment was conducted for heating surfaces, 10, 20, or 40 mm in length. Microbubble emission boiling (MEB) was observed in subcooled transition boiling and was easy to generate for the shorter heating surfaces. In higher flow velocity of subcooled water, MEB was generated at even lower subcooling. Stormy MEB was observed at both the higher subcooling and the higher flow velocity of water. In the stormy MEB, the heat flux rose rapidly above the critical heat flux with larger acoustic noise and vibration. © 2001 Scripta Technica, Heat Trans Asian Res, 30(5): 426–438, 2001  相似文献   

6.
Critical heat flux (CHF) of subcooled flow boiling with water in a tube with an internal twisted tape under nonuniform heating conditions was experimentally investigated by direct current heating of a stainless steel tube. The boiling curve of the subcooled flow under a high heat flux was measured to confirm the characteristics of the nucleate boiling. The net vapor generation (NVG) point almost agreed with the Levy correlation. The increase of the CHF with an internal twisted tape under nonuniform heating conditions was explained by assuming an alternate development and disruption of the bubble boundary layer in which the bubble boundary layer is assumed to be disrupted when the heat flux is lower than the NVG heat flux. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(5): 293–307, 1996  相似文献   

7.
A new mechanism model for determination of the critical heat flux (CHF) in subcooled impingement boiling on the stagnation zone is proposed in this paper. It is based on the combination of the Helmholtz instability theory of macrolayer and the model of bubble induced turbulent heat transfer in subcooled impingement boiling. A semi-theoretical and semi-empirical correlation and its nondimensional form of the CHF for subcooled jet impingement boiling on the stagnation zone are also derived. Under the circumstances of CHF, the bubble induced turbulent heat transfer coefficient gets doubled as compared to the single-phase laminar heat transfer coefficient according to the theoretical model and the experimental data. And this kind of bubble induced turbulent heat transfer enhancing effect can be considered as a fixed ratio. The theoretical analysis result for the present case is successfully verified by the experimental result obtained on the smooth heating surface. Through the discussions, it is obtained that the CHF ratio of the subcooled jet impingement boiling against the saturated jet impingement boiling is theoretically related to the surface condition of the heater and the properties and impact velocity of the working fluid.  相似文献   

8.
Macrolayer thicknesses in transition boiling were determined from the energy balance relation qtr = ρlHfgδl·f , based on measurements of qtr (the time-averaged heat flux in transition boiling) and f (the detachment frequency of vapor masses) for water and ethanol boiling on vertical and horizontal 15-mm-diameter surfaces under atmospheric pressure. The macrolayer thickness for the vertical surface, designed to prevent liquid contact with the periphery of the surface during the vapor mass hovering, agreed well with the correlation proposed previously by the present authors, when the heat flux at macrolayer formation is obtained from a nucleate boiling curve extrapolated to the superheat of transition boiling. The macrolayer on the horizontal surface was apparently thickened due to the inflow of bulk liquid beneath the growing vapor masses. © 1999 Scripta Technica, Heat Trans Jpn Res, 27(8): 568–583, 1998  相似文献   

9.
Subcooled quasi-pool boiling for water and for ethanol aqueous solutions of 10% by weight (10wt%) and 50wt% and ethanol in an ultrasonic field was experimentally performed for the upward flat heating surface of a copper block with 10 mm diameter under atmospheric conditions. Tested liquid subcooling was 15 K, 20 K, and 25 K for water and aqueous solutions of ethanol and 20 K, 30 K, and 40 K for 100wt% ethanol. At 20 K of liquid subcooling for water and ethanol aqueous solutions, no microbubble emission boiling (MEB) has been observed in quasi-pool boiling. Even if MEB occurs, the heat flux levels off and it turns easily to film boiling. In an ultrasonic field, MEB occurs remarkably. Then the heat flux increases to higher than the ordinary critical heat flux as observed in highly subcooled boiling. The experimental results show that the ultrasonic vibration introduces instability of the interface of liquid and vapor and accelerates MEB at 20 K of liquid subcooling for water and aqueous solutions of ethanol. At 15 K of liquid subcooling for water and aqueous solutions, no effect of ultrasonic vibration is observed. However, at 25K of liquid subcooling, the ultrasonic vibration extends MEB region to higher superheating of the heating surface for aqueous solutions of ethanol. The maximum heat flux in MEB decreases with increasing of ethanol concentration and becomes critical heat flux for 100wt% ethanol. No effect of ultrasonic vibration on boiling is observed for the 100wt% ethanol in these experiments.  相似文献   

10.
High critical heat fluxes (CHFs) for subcooled boiling of water in a small tube were investigated experimentally. A platinum tube with an inner diameter of 1.0 mm and a length of 40.9 mm was used in the experiment. The upward flow velocity, the subcooling of water, and the outlet pressure of the experimental tube were varied to enable a parametric study of the CHFs. The flow velocity ranged from 9 to 13 m/s and the inlet subcooling ranged from 69 to 148 K. The boiling number decreased with increasing Weber number. The boiling number is also dependent on a non-dimensional parameter and the density ratio of liquid to vapor. A correlation for the high CHF of the small tube was obtained based on the experimental data. Finally, the high CHF correlation was evaluated using the CHF data obtained by other researchers.  相似文献   

11.
It has been considered that dry-out occurs easily in boiling heat transfer for a small channel, a mini- or microchannel, because the channel was easily filled with coalescing vapor bubbles. In the present study, the experiments of subcooled flow boiling of water were performed under atmospheric conditions for a horizontal rectangular channel for which the size is 1 mm height and 1 mm width, with a flat heating surface of 10 mm length and 1 mm width placed on the bottom of the channel. The heating surface has a top of copper heating block and is heated by ceramic heaters. In the high heat flux region of nucleate boiling, about 70–80% of the heating surface was covered with a large coalescing bubble and the boiling reached critical heat flux as observed by high-speed video. In the beginning of transition boiling, coalescing bubbles were collapsed to many fine bubbles and microbubble emission boiling was observed at liquid subcooling higher than 30 K. The maximum heat flux obtained was 8 MW/m2 (800 W/cm2) at liquid subcooling of higher than 40 K and a liquid velocity of 0.5 m/s. However, the surface temperature was very much higher than that of a centimeter-scale channel. The high-speed video photographs indicated that microbubble emission boiling occurs in the deep transition boiling region.  相似文献   

12.
Critical heat flux (CHF) was measured and examined with high-speed video for subcooled flow boiling in micro-channel heat sinks using HFE 7100 as working fluid. High subcooling was achieved by pre-cooling the working fluid using a secondary low-temperature refrigeration system. The high subcooling greatly reduced both bubble departure diameter and void fraction, and precluded flow pattern transitions beyond the bubbly regime. CHF was triggered by vapor blanket formation along the micro-channel walls despite the presence of abundant core liquid, which is consistent with the mechanism of Departure from Nucleate Boiling (DNB). CHF increased with increasing mass velocity and/or subcooling and decreasing hydraulic diameter for a given total mass flow rate. A pre-mature type of CHF was caused by vapor backflow into the heat sink’s inlet plenum at low mass velocities and small inlet subcoolings, and was associated with significant fluctuations in inlet and outlet pressure, as well as wall temperature. A systematic technique is developed to modify existing CHF correlations to more accurately account for features unique to micro-channel heat sinks, including rectangular cross-section, three-sided heating, and flow interaction between micro-channels. This technique is shown to be successful at correlating micro-channel heat sink data corresponding to different hydraulic diameters, mass velocities and inlet temperatures.  相似文献   

13.
The interfacial instabilities important to the modeling of critical heat flux (CHF) in reduced-gravity systems are sensitive to even minute body forces, especially for small coolant velocities. Understanding these effects is of paramount importance to both the reliability and safety of two-phase thermal management loops proposed for future space and planetary-based thermal systems. Unfortunately, reduced gravity systems cannot be accurately simulated in 1g ground-based experiments. However, ground-based experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. Boiling experiments were performed using FC-72 in vertical and inclined upflow and downflow, as well as horizontal flow, and with the heated surface facing upward or downward relative to gravity. CHF was very sensitive to orientation for flow velocities below 0.2 m/s and near-saturated flow; CHF values for downflow and downward-facing heated surface were much smaller than for upflow and upward-facing surface orientations. Increasing velocity and subcooling dampened the effects of flow orientation on CHF. For saturated flow, the vapor layer characteristics fell into six different regimes: wavy vapor layer, pool-boiling, stratification, vapor stagnation, vapor counterflow, and vapor concurrent flow. The wavy vapor layer regime encompassed all subcooled and high-velocity saturated conditions at all orientations, as well as low-velocity upflow orientations. Prior CHF correlations and models were compared, and shown to predict the CHF data with varying degrees of success.  相似文献   

14.
A photographic study was carried out for the subcooled flow boiling of water to elucidate the rise characteristics of single vapor bubbles after the departure from nucleation sites. The test section was a transparent glass tube of 20 mm in inside diameter and the flow direction was vertical upward; liquid subcooling was parametrically changed within 0–16 K keeping system pressure and liquid velocity at 120 kPa and 1 m/s, respectively. The bubble rise paths were analyzed from the video images that were obtained at the heat flux slightly higher than the minimum heat flux for the onset of nucleate boiling. In the present experiments, all the bubbles departed from their nucleation sites immediately after the inception. In low subcooling experiments, bubbles slid upward and consequently were not detached from the vertical heated wall; the bubble size was increased monotonously with time in this case. In moderate and high subcooling experiments, bubbles were detached from the wall after sliding for several millimeters and migrated towards the subcooled bulk liquid. The bubbles then reversed the direction of lateral migration and were reattached to the wall at moderate subcooling while they collapsed due to the condensation at high subcooling. It was hence considered that the mechanisms of the heat transfer from heated wall and the axial growth of vapor volume were influenced by the difference in bubble rise path. It was observed after the inception that bubbles were varied from flattened to more rounded shape. This observation suggested that the bubble detachment is mainly caused by the change in bubble shape due to the surface tension force.  相似文献   

15.
The macrolayer thickness at critical heat flux has been determined based on the energy balance relation qCHFlHfgδl·f, with measurements of the critical heat flux and the detachment frequency of vapor masses (coalesced bubbles) for various liquids at pressures from 0.05 MPa to 0.35 MPa for upward and vertical 20 mm diameter disk heaters. The macrolayer thickness correlation proposed in the fourth report of this series by Kumada and Sakashita [Trans. JSME, 58 (552) (1992), 2505] was modified with the data obtained in the present report. Macrolayer thicknesses at low heat fluxes for water and ethanol under atmospheric pressure were also measured while changing the orientation of the heating surface from vertical to downward. The measured macrolayers at low heat fluxes were thinner than those obtained from existing data measured by a probe method in the nucleate boiling region and agreed fairly well with the proposed correlation. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25 (8): 522–536, 1996  相似文献   

16.
The experimental investigation on vapor bubble growth is performed for analyzing subcooled boiling in a vertical annular channel with inner heating surface and upward water flow under atmospheric pressure. Bulk liquid mass flux ranges from 79 kg/m2s to 316 kg/m2s, and subcooling is from 40 K to 60 K. The bubble behaviors from inception to collapse are captured by High-speed photography. The performance of bubble growth recorded by the high-speed photography is given in this paper. The bubble behaviors, effect of the bubble slippage on the heat transfer, and various forces acting on the bubble are discussed.  相似文献   

17.
Linear stability analysis of a thin vapor film in subcooled film boiling on a horizontal cylinder is reported. The effects of liquid inertia, vapor viscosity and compressibility, and heat transfer were taken into account. Theoretical predictions of the heat transfer coefficient at the neutral stability point were compared with experimental data at the minimum-heat-flux point that was obtained during rapid quenching of thin horizontal wires in water and ethanol. At high liquid subcooling, the experimental value was 60% of the theoretical prediction irrespective of the wire diameter and quenching liquid. This difference was considered to be due to the nonuniformity of the vapor film which was neglected in the theoretical analysis. © 1998 Scripta Technica. Heat Trans Jpn Res, 26(4): 219–235, 1997  相似文献   

18.
A quantitative analysis of critical heat flux (CHF) under high mass flux with high subcooling at atmospheric pressure was successfully carried out by applying a new transition region model for a macro-water sublayer on heated walls to the existing model of a vapor blanket over the macro-water sublayer. The CHF correlation proposed in this study could predict well the experimental data obtained for water mass flux of 940 to 20,300 kg/m2s using circulate tubes 2 to 4 mm in diameter and 30 to 100 mm in length with inlet subcooling of 30 to 90 °C and rectangular channels heated from one side with gaps of 3 to 20 mm, length of 50 to 305 mm, and inlet subcooling of 30 to 77 °C and revealed a unique feature of CHF, namely, that the effects of wall friction of subcooled boiling flow and the velocity of the steam blanket above the macro-water sublayer at atmospheric pressure become the dominant factors while they were not dominant at higher pressures. © 1997 Scripta Technica, Inc Heat Trans Jpn Res, 26 (1): 16–29, 1997  相似文献   

19.
This paper deals with heat transfer and critical heat flux (CHF) in subcooled flow boiling offering a fundamental study aimed at high heat flux cooling. Experiments with water at 0.12 MPa were conducted in a mass velocity range from 500 kg/m2s to 15,000 kg/m2s (velocity from 0.5 m/s to 15 m/s) and subcooling from 20 K to 60 K. A sheet of stainless steel (80 mm in heated length, 10 mm wide, and 0.2 mm thick) was mounted flush with a sidewall of a vertical rectangular channel (cross-section 20 mm by 30 mm) and heated directly using direct current. It was found that mass velocity and subcooling strongly affect CHF and heat transfer in non-boiling convection and partial nucleate boiling regimes. These two parameters have no appreciable influence in the fully developed nucleate boiling regime. In the parameter range used, CHF reached 15 MW/m2. Boiling bubble behavior just prior to reaching CHF was found to vary depending on mass velocity and subcooling. 1998 Scripta Technica, Heat Trans Jpn Res, 27(5): 376–389, 1998  相似文献   

20.
An analytical model of heat transfer based on evaporation from the micro and macrolayers to the vapor bubble during pool boiling is developed. Evaporation of microlayer and macrolayer during the growth of individual bubbles is taken care of by using temporal and spatial variation of temperature in the liquid layer. Change of bubble shape during the entire cycle of bubble growth and departure is meticulously considered to find out the rate of heat transfer from the solid surface to the boiling liquid. Continuous boiling curve is developed by considering the bubble dynamics and decreasing thickness of liquid layer along with the increase of dry spot radius. Transient variation of macrolayer and microlayer thickness is predicted along with their effect on CHF. Present model exhibits a good agreement with reported experimental data as well as theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号