首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对以槽式太阳能集热器为背景的高密度、高度非均匀热流下水平管内的混合对流换热问题,采用大涡模拟方法,研究了热流密度非均匀性对水平管内混合对流瞬态涡结构、脉动强度、湍流热通量及局部平均壁温的影响;揭示了非均匀热流下自然对流对管内湍流特性的影响规律;提出了适用于不同热边界条件下管内混合对流换热的强化措施。结果表明:均匀热流时,自然对流会抑制管顶部的湍流脉动,使流动层流化,造成传热能力局部恶化;非均匀热流时,随着自然对流的增强,近壁面速度脉动强度先减小后增大,二次流逐渐增强,换热能力逐渐提高,故管内换热能力受湍流脉动与二次流协同影响;在自然对流影响下,均匀加热时管顶部可采用针对层流的强化换热措施,非均匀加热时需着重提高管底部高热流区域的湍流脉动与涡强度。  相似文献   

2.
The present study examines a three‐dimensional numerical simulation of vortex structures and heat transfer behind a hill mounted in a laminar boundary layer. A vortex pair is formed symmetrically in the separation bubble behind the hill, and a hairpin vortex is periodically shed in the wake. The hairpin vortex moves downstream with time, and the gradient of the head of the hairpin vortex increases. Further downstream, the hairpin vortex is deformed to an Ω‐shaped structure. In the growth process of the hairpin vortex, horn‐shaped secondary vortices grow near the wall. The dissipation rate of the temperature fluctuation around the hairpin vortex increases because the heated fluid near the wall is removed to the free stream by Q2 ejection. Heat transfer increases due to the legs of the hairpin vortex and secondary vortices. These vortices generate high turbulence in the flow field and also contribute to an increase in Reynolds shear stress and turbulent heat flux. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(7): 398–411, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20217  相似文献   

3.
Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper.The expansion ratio and aspect ratio of the channel are 2.0 and 16.0,respectively.Reynolds number of the flow is 200 and it is over the critical Reynolds number.Over the critical Reynolds number,the flow in the symmetric channel becomes asymmetric and deflects to one side of the walls.Effects of the pulsating fluctuation at the inlet upon the flow in the channel are investigated.It is clarified that the inlet flow with a pulsating fluctuation of Strouhal number 0.05 and 0.10 strongly affects on the flow in the channel,and heat transfer on the walls is enhanced,especially on the wall surface covered with long separation bubble.On the other hand,the pulsation of St=0.0125 oscillates the shear layer more weakly than that of St=0.05,0.10 and the enhancement of heat transfer is smaller,though some vortices are shed from the vicinity of the side wall near the reattachment region.The oscillation of the main flow calms down gradually as the Strouhal number of the pulsation increases over 0.10.The influence of pulsation of St=0.20 on the flow is restricted in the near downstream of the step,and heat transfer on the walls is almost similar to that of the steady flow in the channel.  相似文献   

4.
The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level.  相似文献   

5.
Flame stabilization in attachment jet combustors is based on the existence of the high temperature recirculation zone, provided by the Coanda effect of an attachment jet. The single attachment jet in a rectangular channel is a fundamental form of this type of flow. In this paper, the detailed characteristics of turbulent flow of a single attachment jet were experimentally studied by using a 2-D LDV. The flowfield consists of a forward flow and two reverse flows. The forward one is composed of a curved and a straight section. The curved section resembles a bent turbulent free jet, and the straight part is basically a section of turbulent wall jet. A turbulent counter-gradient transport region exists at the curved section. According to the results, this kind of combustor should have a large sudden enlargement ratio and not too narrow in width. Project supported by the National Natural Science Foundation of China.  相似文献   

6.
A 3D non-isotropic algebraic stress/flux turbulence model is employed to simulate turbulent buoyant helicoidal flow and heat transfer in a rectangular curved open channel. The prediction shows that, unlike the isothermal flow, there are two major and one minor secondary flow eddies in a cross section of thermally stratified turbulent buoyant helicoidal flow in a curved open channel. The results compare favorably with available experimental data. The thermocline in a curved channel is thicker than that in a straight channel. All of these is the result of complex interaction between the buoyant force, the centrifugal force and the Reynolds stresses. The turbulent flow in a curved channel is obviously non-isotropic: the turbulence fluctuations in vertical and radial directions are lower in magnitude than that in the axial direction, which illustrates the suppression of turbulence due to buoyant and centrifugal forces. The results are of significant practical value to engineering works such as the choice of sites for intake and pollutant-discharge structures in a curved river.  相似文献   

7.
Deterioration in heat transfer of endothermal hydrocarbon fuel   总被引:5,自引:0,他引:5  
Numerical studies under supercritical pressure are carried out to study the heat transfer characteristics in a single-root coolant channel of the active regenerative cooling system of the scramjet engine, using actual physical properties of pentane. The relationships between wall temperature and inlet temperature, mass flow rate, wall heat flux, inlet pressure, as well as center stream temperature are obtained. The results suggest that the heat transfer deterioration occurs when the fuel temperature approaches the pseudo-critical temperature, and the wall temperature increases rapidly and heat transfer coefficient decreases sharply. The decrease of wall heat flux, as well as the increase of mass flow rate and inlet pressure makes the starting point of the heat transfer deterioration and the peak point of the wall temperature move backward. The wall temperature increment induced by heat transfer deterioration decreases, which could reduce the severity of the heat transfer deterioration. The relational expression of the heat transfer deterioration critical heat flux derives from the relationship of the mass flow rate and the inlet pressure.  相似文献   

8.
In the present work, convection heat transfer of water at supercritical pressure in a narrow annulus at low Reynolds numbers (less than 1500) has been investigated numerically. The continuity, momentum and energy equations have been solved simultaneously using computational fluid dynamics techniques with the inlet Reynolds number ranging from 250 to 1000, Grashof number from 2.5 × 105 to 1 × 106 and the inlet fluid temperature from 360 °C to 380 °C. In all of the case studies, a sub-cooled water flow at supercritical pressure (25 MPa) and a temperature close to the pseudo-critical point enters the annular channel with constant heat flux at inner wall surface and insulated at outer wall. To calculate the velocity and temperature distributions of the flow, discretized form of the governing equations in the cylindrical coordinate system are obtained by the finite volume method and solved by the SIMPLE algorithm. It has been shown that the effect of buoyancy is strong and causes extensive increase in velocity near the inner wall, and consequently an increase in the convective heat transfer, which is desirable. Besides, the effects of inlet Reynolds number, Grashof number and inlet temperature on the velocity distribution and also on the heat transfer have been investigated.  相似文献   

9.
An inverse heat convection problem is solved for simultaneous estimation of unknown inlet temperature and wall heat flux in a thermally developing, hydrodynamically developed turbulent flow in a circular pipe based on temperature measurements obtained at several different locations in the stream. The direct problem of turbulent forced convection is solved with a finite difference method with appropriate algebraic turbulence modelling. Although we seek for two unknown functions, we formulate the inverse problem as one of parameter estimation through the representation of the unknown inlet temperature profile and the wall heat flux distribution by one-dimensional finite element interpolation. Nodal values of the inlet temperature and the wall heat flux at chosen positions are determined as unknown parameters through the Levenberg–Marquardt algorithm for minimization procedure. Numerical results for several testing cases with different magnitudes of measurement errors are examined by using simulated experimental data. The effects of the number and the locations of the temperature measurement points are discussed.  相似文献   

10.
We investigate the effects of heat transfer on peristaltic flow of a viscous fluid in a curved channel. Governing equations for flow and heat transfer are derived using long wavelength and small Reynolds number assumptions. Exact solution is obtained for stream function. The temperature field is obtained numerically by a shooting method using Runge–Kutta algorithm. Effects of curvature parameter and Brinkman number are analyzed on various features of peristaltic motion and temperature field. It is found that peristaltic pumping rate increases in going from straight to curved channel. It is further noted that the symmetry of trapped bolus is destroyed in the curved channel and upper bolus pushes the lower bolus toward the lower wall. Moreover, the rate of heat transfer decreases in a curved channel in comparison with the case of straight channel.  相似文献   

11.
The present study of low Reynolds number submerged impinging jets, re-examines the cause of peaks in the radial distribution of the Nusselt number by way of a direct numerical simulation. Two peaks, commonly named the inner and the outer, were particularly studied. The laminar flow behavior within a Reynolds number range of 392 ? Re ?  1804 as well as different velocity inlet profiles (parabolic, 7th power, uniform) were examined under axisymmetric conditions. The inner peak was found to be associated to the radial distribution of the radial flow acceleration, which is strongly influenced by the velocity profile of the incoming jet. Based on an energy balance, a critical inflow velocity near the wall for the presence of the inner peak was derived analytically. The uniform velocity profile generates strong radial acceleration, which leads to the required inflow and the occurrence of the inner peak. The outer peak was found to be related to the appearance of large scale vortices and their interaction with the heated wall. However, in order to generate such large scale vortices a fluctuating inlet velocity was required. Both peaks, existing under laminar flow conditions, were found not to be related to turbulence, as is widely assumed in literature.  相似文献   

12.
In an actual boiling channel, e.g., a boiler water‐tube, the circumferential heat flux is not uniform. Thus, the critical heat flux (CHF) of a non‐uniformly heated tube becomes an important design factor for conventional boilers, especially for a compact water‐tube boiler with a tube‐nested combustor. A small compact boiler is operated under low‐pressure and low‐mass‐flux conditions compared with a large‐scale boiler, thus the redistribution of liquid film strongly affects the characteristics of CHF. In this investigation, non‐uniform heat flux distribution along the circumferential direction was generated by using the Joule heating of SUS304 tubes with the wall thickness distribution. The heated length of test‐section was 900 mm with an inner diameter of 20 mm and an outer diameter of 24 mm. The center of the inner tube surface was shifted by ε=0, 0.5, 1.0, 1.5 mm from the center of the outer tube surface. The heat flux ratio between maximum and minimum heat flux of these tubes corresponded to 1.0, 1.7, 3.0, and 7.0, respectively. The experimental conditions were as follows: system pressure at 0.3 and 0.4 MPa, mass flux of 10–100kg/(m2s), inlet temperatures at 30° and 80°. The experimental results showed an increase in the critical heat flux substantiated by the existence of the redistribution of the flow. These characteristics are explained by using a concept similar to that of Butterworth's spreading model. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(1): 47–60, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20095  相似文献   

13.
A general solution to the energy equation under zero wall temperature or zero heat flux boundary condition for the decay of an inlet and initial temperature distribution of an incompressible transient turbulent flow heat transfer between two parallel plates is given. It is shown that these solutions may then be used to obtain solutions due to unit steps in wall temperature or wall heat flux which is sufficient to sort out prescribed wall temperature and prescribed wall heat flux boundary condition. The results are confirmed experimentally by the frequency method. An experimental apparatus has been designed, built and used for this purpose.  相似文献   

14.
Fractal-like branching flow networks in disk-shaped heat sinks are numerically optimized to minimize pressure drop and flow power. Optimization was performed using a direct numerical search, gradient-based optimization, and genetic algorithm. A previously validated one-dimensional pressure drop and heat transfer model, with water as the working fluid, is employed as the objective function. Geometric constraints based on fabrication limitations are considered, and the optimization methodology is compared with results from a direct numerical search and a genetic algorithm.The geometric parameters that define an optimal flow network include the length scale ratio, width scale ratio, and terminal channel width. Along with disk radius, these parameters influence the number of branch levels and number of channels attached to the inlet plenum. The geometric characteristics of the optimized flow networks are studied as a function of disk radius, applied heat flux, and maximum allowable wall temperature. A maximum inlet plenum radius, minimum interior channel spacing, and ranges of terminal channel widths and periphery channel spacing are specified geometric constraints. In general, all geometric constraints and the heat flux have a significant influence on the design of an optimal flow network. Results from a purely geometrically derived network design are shown to perform within 15% of the direct search and gradient-based optimized configurations.  相似文献   

15.
Direct numerical simulation (DNS) was performed for a turbulent channel flow with the time-mean temperature linearly varying in the spanwise direction. Spanwise heat transfer in wall turbulence was explored in this simple case where the turbulent heat flux has only a spanwise component. The computed flow field was confirmed to be in good agreement with the DNS database constructed by Kasagi and colleagues (1992). The general trend of the presently calculated spanwise eddy diffusivity of heat is similar to the experimental data reported by Maekawa and colleagues (1991). However, there is a considerable discrepancy between their results in the vicinity of the wall. The numerical results demonstrate that the spanwise turbulent heat flux is nearly in local equilibrium over the whole channel width excluding the viscous sublayer. © 1999 Scripta Technica, Heat Trans Asian Res, 28(8): 675–686, 1999  相似文献   

16.
以去离子水为工质,对尺寸为720 mm×250 mm×3.5 mm的单面电加热竖直矩形窄通道内饱和沸腾起始点进行实验研究。分析了加热热流密度、工质进口温度和质量流量对饱和沸腾起始点位置及饱和沸腾起始点处壁面过热度的影响。在已有饱和沸腾起始点预测关联式的基础上,对实验数据进行非线性回归分析,得到适用于单面加热矩形窄通道饱和沸腾起始点的新关联式。结果表明:新拟合的关联式预测值与实验值的平均相对误差为17.63%,能很好的预测常压、低加热热流密度与低流速条件下的饱和沸腾起始点处壁面过热度与热流密度的关系。  相似文献   

17.
Heat transfer and flow visualization experiments have been made in a channel with a rectangular cylindrical section having various width-to-height ratios. Vortices were observed to shed periodically from the cylinder and then reattach to the channel wall. This reattachment of the vortices induces a periodic fluctuation in heat flux at the wall and enhances the heat transfer in the downstream region of the cylinder. The streamwise position of the maximum Nusselt number moves downstream with decreasing width-to-height ratio, b/h, of the cylinder. When b/h = 2.0, however, the heat flux periodicity disappears because the wake narrows intermittently owing to reattachment of the separated flows to the upper and lower surfaces of the cylinder. © 1998 Scripta Technica. Heat Trans Jpn Res, 27(1): 84–97, 1998  相似文献   

18.
An experimental study was carried out in which the effects of heat flux and velocity on the incipient-boiling superheat were determined for turbulent flow of sodium in an annular channel. The heating surface was polished type-316 stainless steel having a profilometer roughness of 14–18 μin. (rms). The rate of temperature rise of the heating surface was maintained constant in each incipient-boiling run, by gradually increasing the inlet sodium temperature to the test section, while the heat flux on the heater was held constant. In this way, the independent variables of heat flux and rate of temperature rise were separated.For a finite rate of temperature rise, it was found that the greater the heat flux, the greater was the incipient-boiling superheat, other things being equal. It was also found that the greater the rate of temperature rise, the greater was the effect of heat flux. The flux was varied over the range 25 000–300 000 Btuhft2.In general agreement with published results of previous investigators, the incipient-boiling superheat was found to have a strong dependence on the flow rate, falling off exponentially as the flow rate was increased.The axial location of boiling inception was determined by means of a series of voltage taps spaced along the outer wall of the test section; and the results presented herein represent superheat values for, and nucleations at, the upper end of the heater, or at the highest heating-surface temperature in the testsection channel.  相似文献   

19.
Optimized and robust designs of one-side heated plasma-facing components and other heat flux removal components are dependent on conjugate heat transfer. In the present case, the conjugate heat transfer involved measuring the local distributions of the inside wall temperature and heat flux in a single-side heated monoblock flow channel with: (1) peripheral (radial and circumferential) heat transfer; and, (2) coupled internal turbulent, forced convective single-phase flow and flow boiling. For the first time, multi-dimensional boiling curves have been measured for a single-side heated monoblock flow channel. Using a thermal hydraulic diameter as the characteristic dimension in select correlations for the highest mass velocity (3.2 Mg/m2 s), good agreement was obtained. At lower mass velocities, only the single-phase correlations agreed better with the data for the averaged net incident heat flux vs the inside channel wall temperature. Hence, additional correlation development and adaptation are needed for single-side heated monoblocks with peripheral heat transfer.  相似文献   

20.
An experimental and numerical study on convection heat transfer of water flowing through an alternating cross‐section flattened (ACF) tube are investigated in this paper. The thermal‐fluid characteristics were evaluated by numerical simulation. The test run conditions covered a mass flux of 200 to 800 kg m?2 s?1, a heat flux of 10 kW/m2, and an inlet temperature of 40°C. The results showed that the Nusselt number increased with the increase in mass flux. Moreover, the heat transfer was also affected by the flow characteristics. Vortices were formed at the curved wall, and their intensities were increased along the flow direction. It was also found that the heat transfer and pressure drop were larger than that of the circular tube. However, the thermal performance was greater than the pressure loss penalty. The comparison results showed that the ACF tube had better performance than the circular tube. Further, the details of heat transfer, flow resistance, and fluid behavior were investigated and discussed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号