首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, thermal diffusivity measurements have been carried out on industrial samples of CMSX-4 nickel-base superalloy using the laser-flash method with emphasis on studying the effect of temperature and microstructure on the thermal diffusivity. The measurements were performed in the temperature range from 298 to 1623 K covering both solid as well as liquid ranges. Below 1253 K, the thermal-diffusivity values were found to increase with increasing temperature. Microstructural investigations of quenched samples revealed that below 1253 K, an ordered phase, usually referred to as the -phase was present together with the disordered fcc phase, often referred to as the γ phase. Between 1253 K and the solidus temperature, the phase was found to dissolve in the matrix alloy causing an increase in the disordering of the alloy, and thereby a small decrease in the thermal-diffusivity values. The thermal-diffusivity values of samples pre-annealed at 1573 K exhibited constancy in the temperature range from 1277 to 1513 K, which is attributed to the attainment of thermodynamic equilibrium. These equilibrium values were found to be lower than the results for samples not subjected to annealing. The thermal-diffusivity values of the alloy in the liquid state were found to be independent of temperature.  相似文献   

2.
The National Metrology Institute of Japan (NMIJ) in AIST has investigated the laser flash method in order to establish a thermal diffusivity standard for solid materials above room temperature. A uniform pulse-heating technique, fast infrared thermometry, and a new data analysis method were developed in order to reduce the uncertainty in thermal diffusivity measurements. The homogeneity and stability of candidate reference materials such as isotropic graphite were tested to confirm their qualification as thermal diffusivity reference materials. Since graphite is not transparent to both the heating laser beam and infrared light for thermometry, the laser flash method can be applied to graphite without black coatings. Thermal diffusivity values of these specimens with different thicknesses, were measured with changing heating laser pulse energies. A unique thermal diffusivity value can be determined for homogeneous materials independent of the specimen thickness, by extrapolating to zero heating laser pulse energy on the plot of apparent thermal diffusivity values measured with the laser flash method as a function of heating laser pulse energy.Paper presented at the Fifteenth Symposium on Thermophysical Properties, June 22--27, 2003, Boulder, Colorado, U.S.A.  相似文献   

3.
The first international pilot study of thermal-diffusivity measurements using the laser flash (LF) method was organized by the working group 9 (WG9) of the Consultative Committee for Thermometry (CCT) of the Bureau International des Poids et Mesures (BIPM). Four National Metrology Institutes (NMIs) participated in this comparison. Thermal-diffusivity measurements on the Armco iron and the isotropic graphite IG-110 were carried out from room temperature to about 1200 K. The sample sets consist of five disk-shaped specimens of 10 mm in diameter and (1.0, 1.4, 2.0, 2.8, and 4.0) mm in thickness, each cut from the same block of material. These sample sets were specifically prepared for the comparison and sent to the participants. In the pilot comparison, the thermal diffusivity of each sample was estimated using the LF method with a specific extrapolating procedure. This procedure has the advantage of determining the inherent thermal diffusivity of the material. The extrapolated value in a plot of measured apparent thermal-diffusivity values versus the amplitude of the output signal corresponding to the temperature rise during each measurement is defined as the inherent thermal diffusivity. The overall results showed good agreement between independent laboratories, measurement equipment, and specimen thicknesses. The thermal diffusivities of the materials were determined using our measured results. A quantitative evaluation of the variability of the data obtained by the participants has been done, by evaluating the deviations from the reference value, the Z-value, and the En-number. Some data showed a large deviation from the reference value. It was concluded that these are caused by an insufficient time response of the measurement equipment and some difficulties with changing the pulsed heating energy. The effect of the thermal expansion on the thermal diffusivity was checked. It was found that the thermal-expansion effect was very small and negligible in this case.  相似文献   

4.
Suitable positioning of temperature probes improves the accuracy of thermal-diffusivity measurements in thermo-optical tests. The optimal positions depend on the unknown diffusivity, making the positions unknown a priori. One solution is to measure the temperature field and choose the optimal positions after the experiment. D-optimality is used here to choose the best positions for temperature measurement to determine the principal components of thermal diffusivity for transversely isotropic materials in a flash-type experiment. Two D-optimality parameters are examined: one uses all available information; the other neglects nuisance parameters. The slab specimens are heated over a central region while temperatures are measured on the opposite face. Increasing the duration of the heating pulse provides more information, within the limit of the imposed boundary conditions. Experiments using a metal plate showed that measurements made near the optimal positions improve the accuracy of the estimated diffusivity. These results support using IR thermography to provide flexibility in positioning measurements. This method of optimization shows promise in optimizing measurement of specimens having transverse isotropy.  相似文献   

5.
Thick ceramic coatings deposited by plasma spraying techniques are widely used as wear and corrosion resistant coatings at high temperature. To measure accurately the thermal diffusivity of such coatings, the diffusivimeter of LNE has been set up to allow multilayered material studies up to 1,400°C by rear-face and front-face laser flash methods. These two methods have been compared in a large temperature range by measuring the thermal diffusivity of homogeneous (Armco iron and Poco graphite) and multilayered materials (chromium oxide coating deposited on iron alloy substrate). The thermal-diffusivity values measured by using front-face and rear-face techniques are in good agreement, with a relative deviation of less than 5% depending on temperature and materials.  相似文献   

6.
The adoption of the popular laser-flash method at temperatures far below 300 K is restricted by the weak signal-to-noise ratio and the limited spectral bandwidth of the commonly used mercury cadmium tellurite (MCT) infrared (IR) detector used as a non-contacting temperature probe. In this work, a different approach to measure the temperature rise in pulse heating experiments is described and evaluated. This method utilizes the change of the temperature-dependent electrical resistance of a thin strip of sputtered gold for the detection of a temperature rise as it was proposed by Kogure et al. The main advantage of this method at lower temperatures is the significantly higher signal-to-noise ratio compared to the commonly used IR detectors. A newly developed laser-flash apparatus using this detection method for the determination of the thermal diffusivity in the temperature range from 80 K to 300 K is presented. To test the accuracy of the new detection method, the thermal diffusivity of a borosilicate crown glass (BK7) specimen at 300 K was determined and compared to results derived with a MCT detector. Good agreement of the derived thermal diffusivity values within 3 % was found. The thermal diffusivity of BK7 and polycrystalline aluminum nitride (AlN) was measured at temperatures between 80 K and 300 K by a laser-flash method to test the functionality of the apparatus. Finally, the thermal conductivity was calculated using values for the specific heat capacity determined by temperature modulated differential scanning calorimetry (MDSC). Comparisons with literature data confirm the reliability of the experimental setup.  相似文献   

7.
The National Metrology Institute of Japan (NMIJ) of AIST has been studying the laser flash method in order to establish an SI traceable thermal- diffusivity standard. Key technologies have been developed to reduce the uncertainty in laser flash measurements. In the present study, an uncertainty evaluation has been carried out on the laser flash measurement method in order to determine the thermal diffusivity value of IG-110, a grade of isotropic high-density graphite, as a candidate reference material. The thermal diffusivity measured by the laser flash method is derived from a specimen thickness and a heat diffusion time. And a laser flash measurement is carried out at a given temperature. The measurement system is composed of three sections corresponding to each measured quantity: length, time, and temperature. Therefore, we checked and calibrated our measurement system, and estimated the uncertainty of measurement results for the case of a grade of isotropic graphite.Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

8.
The aim of this article is to approach thermal-diffusivity measurement possibilities, under low energy constraints, offered by a rear-face random photothermal analysis. A theoretical study demonstrates first the method??s feasibility. It shows then that the random method allows a good estimation of thermal diffusivity with a low temperature rise in the studied sample. This constitutes an advantage for the thermophysical characterization of fragile materials (artworks, biological samples). A study, experimental, carried out around the thermophysical characterization of a glass sample validates the possibilities of the random photothermal method for thermal-diffusivity measurements.  相似文献   

9.
The thermal diffusivity of the aluminum alloy Al–17Si–4Cu (A390) was measured in the temperature range from room temperature to 730°C using the laser-flash technique. A commercial laser-flash system (Netzsch LFA 427) was used for the measurements. A short laser pulse of 300μs was applied to heat the bottom surface of a disk-shaped specimen, resulting in a time-dependent temperature increase at the top surface. A correction for the laser pulse length as well as the surface radiation and convection was applied in order to evaluate the half time value of the temperature increase. The thermal diffusivity was calculated from the specimen thickness and the half time value. A sapphire crucible was used to contain the specimen in the mushy region and in the liquid state. As the laser is fired from below at the bottom surface of the specimen, the thickness of the melt has to be small to avoid significant buoyancy. The thermal diffusivity of the alloy above the eutectic temperature and in the liquid is drastically lower than in the solid state of the alloy.  相似文献   

10.
In this paper the photoacoustic technique in the thermal-wave transmission configuration is applied to thermal diffusivity measurements in liquids. The one-dimensional heat diffusion problem involving three layers, and assuming surface absorption only, is solved for this goal. Linear relations among the photoacoustic amplitude (on a semi-log scale) and phase, as functions of the liquid sample thickness, are shown in each case. An analytical procedure involving linear fits to the experimental data is developed to produce two independent values for thermal diffusivity. The thermal diffusivity of three homogeneous liquids (distilled water, ethylene-glycol, and olive oil) was measured, and excellent agreement was obtained between results from both the amplitude and phase, as well as with thermal-diffusivity values reported in the literature.  相似文献   

11.
A pulse method for measuring the thermal diffusivity of semi-infinite specimens is described. Results of thermal-diffusivity measurements on iron and tin are presented.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 3, pp. 450–454, September, 1978.  相似文献   

12.
The pulse hot strip method is a newly developed dynamic method to measure the thermal conductivity and thermal diffusivity of solids. It is based on monitoring the temperature response of a sample to a very short heat pulse liberated by a strip heat source. The instrument's uncertainty is estimated to be less than 3% for both quantities.  相似文献   

13.
Following the characterization of the batch of Pyroceram 9606 material, a number of the partners in the European Commission (EC) supported program carried out certification measurements of thermal conductivity and thermal diffusivity. Six laboratories undertook thermal-diffusivity measurements using either the flash or the modulated beam methods. Eight laboratories measured the thermal conductivity, using either the steady-state guarded-hot-plate method or one of the transient hot-wire methods. Results from each series of measurements were provided in a standard format as an aid to simplify the statistical analysis of the data. The results were corrected to the nominal measured temperature and for change in dimension, analyzed separately, and presented in a standard format. Outliers were identified and rejected where appropriate, based on both statistical and technical evidences. The individual data sets were combined, and the grand mean data for each property analyzed further to provide the certified values together with their uncertainty limits. Finally, using the specific heat capacity and density values obtained from the characterization tests, values of thermal conductivity were calculated from the measured thermal diffusivity. The difference between the calculated and certified values is less than 2.7 %, which is well within the uncertainty limit assigned for the certified thermal property values.  相似文献   

14.
The laser-induced thermal grating technique has been used to determine the thermal diffusivity of liquids and liquid mixtures. But the dynamic behaviour of the transient thermal grating has not yet been thoroughly investigated, and the systematic errors, which result from the departures from one-dimensional heat conduction, have scarcely been studied quantitatively. In this paper. a three-dimensional numerical simulation and results of the transient thermal grating technique are presented, which enable a good understanding of the dynamic behaviour of the transient thermal grating. The results of this simulation are important for the proper design of the experimental setup to keep the systematic errors for the diffusivity measurement small. Based on the simulation method, the systematic errors were analyzed quantitatively. Here, the following effects were studied: (I) sample thickness, (2) intersection angle, (3) absorption, (4) Gaussian beam intensity distribution and focusing of heating laser beam, and (5) heating pulse duration and laser power. This error analysis makes it possible to specify the criteria for optimum measuring conditions, to correct the measured thermal-diffusivity values for systematic errors, and to estimate the accuracy of the measurements.  相似文献   

15.
The laser-flash method is a fast, widely used and well established technique to measure the thermal diffusivity. Since its introduction in the 1960s, it was proposed to expand this technique to the measurement of heat capacity and emissivity. Currently, the measurement of spectral emissivity at high temperatures is connected with relatively large uncertainties, although the spectral emissivity is an essential parameter for applications, e.g., in the lamp industry and fusion research. In this work, a theoretical study is presented on the possibility of emissivity measurements using the laser-flash method. Two mathematical approaches are discussed which solve the problem, that a measured temperature rise—necessary to calculate the emissivity—itself depends on the emissivity. It is shown that both methods have a negligible arithmetic error, making them applicable to be used in future work.  相似文献   

16.
This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.  相似文献   

17.
The transient hot-wire (THW) technique is widely used for measurements of the thermal conductivity of most fluids, and some attempts have also been carried out for simultaneous measurements of the thermal diffusivity with the same hot wire. However, for some particular liquids like concentrated nitric acid solutions or similar nitric mixtures, for which the thermal properties are important for industrial or security applications, this technique may be difficult to use, because of possible technological incompatibilities between measurement probe materials and highly electrically conducting and corrosive liquids. Moreover, the possible highly energetic (explosive) character of these liquids requires minimum volume liquid samples and safety measurement devices and processes. It is the purpose of this paper to report on a modified THW technique (previously used for thermal-diffusivity measurements in soils), which is associated with a specific patented double-wire probe and is shown to be valid for direct thermal-diffusivity measurements in liquids. This method responds to the previous requirements and allows automatic and quasi-simultaneous thermal-conductivity and thermal-diffusivity measurements to be made safely on liquids compatible with the tantalum technology, with liquid sample volumes < 2 cm3. Low uncertainties are found for the thermal-diffusivity data when relative measurements are carried out with reference liquids like water or toluene.  相似文献   

18.
Several recent advances made in the author's laboratory in the experimental apparatus and measuring procedures for precise measurements of thermophysical properties by the laser-flash method are reviewed. Heat-capacity measurement has been done on metals and ceramics within an accuracy of ±0.5% in the range from 80 to 800 K, and within ±2% from 800 to 1100 K. Thermal diffusivity has been also measured from 80 to 1300 K with reasonable corrections for heat leak and finite pulse width. As an example of the experimental results by the method, the data of heat capacity, thermal diffusivity, and thermal conductivity of vanadium-oxygen alloys containing 1.07 and 3.46 at.% of oxygen from 80 to 800 K are presented and compared with those of pure vanadium metal.Presented at the Japan-United States Joint Seminar on Thermophysical Properties, October 24–26, 1983, Tokyo, Japan.  相似文献   

19.
A dilatometric method is presented, suitable to obtain both thermal diffusivity and conductivity of low-conducting solids with a low expansion coefficient. The repeatibility of the measurements of thermal conductivity is 3%, whereas that for diffusivity is 5 %. Data for fused silica at room temperature are given, consistent with those reported in the literature. Since the method is based on detecting the thermal expansion of a copper disk in thermal contact with the specimen, its range of applicability is linked to the sensitivity by which the dilation of copper can be measured: no difficulty arises between liquid nitrogen and 1000°C.  相似文献   

20.
The local thermal diffusivity is of special interest for quality control of materials grown by physical vapor transport. A typical specimen of these materials consists of single crystals with sizes up to 1 mm. The conventional laser-flash method delivers only an average value of the thermal diffusivity of these polycrystalline materials. A local sensitive measurement system is desirable to determine the thermal diffusivity of single grains with diameters of 100 μm and above. In this work a modification of a standard laser-flash apparatus is presented. The key feature is the position control of the specimen in the plane perpendicular to the laser beam and the IR-detection unit. The mechanical precision of the position control is better than 100 μm. The IR-detection unit consists of a MCT-detector, a polycrystalline IR-fiber, and a system to focus on the sample surface. To study the experimental potential of the modified laser-flash method, measurements of the local thermal diffusivity of a multiphase specimen with known microscopic thermal properties are presented. The obtained results are discussed with respect to the energy profile of the laser beam and the alignment of the IR-detection unit. It is shown that the thermal diffusivity of a small specimen area with a diameter of 2 mm can be determined with an uncertainty of ±5 %. For a polycrystalline aluminum nitride (AlN) specimen with grain sizes of the order of 1 mm, a mean value for the thermal diffusivity of (72.1 ± 3.6) m2 · s−1 at room temperature is determined. A possible local variation of the thermal diffusivity cannot yet be observed. An improvement of the resolution is in progress. Paper presented at the Seventeenth European Conference on Thermopysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号