首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of layered microstructural composites that combines equiaxed and textured alumina layers was fabricated. Template loading was used to change the texture fraction and porosity in the textured layers. Due to the thermal expansion anisotropy of the textured layers, residual compressive stresses as high as 100 MPa were achieved during cooling from the sintering step. Fracture experiments showed that the interface between the basal planes of highly oriented alumina grains in the textured layers changes from a “strong interface” to a “weaker interface” as the porosity changes from 1% to 5%. Composites with 5% porous textured layers show both crack bifurcation and crack deflection in the textured layers. Crack deflection is attributed to the anisotropic fracture energy of the oriented microstructures and crack bifurcation is ascribed to the compressive stresses that arise from the thermal expansion mismatch between adjacent layers.  相似文献   

2.
Microscopic study of failure mechanisms in infiltrated carbon fiber felts   总被引:1,自引:0,他引:1  
B Reznik  D Gerthsen 《Carbon》2003,41(1):57-69
Failure mechanisms in infiltrated carbon fiber felts have been studied by optical light microscopy, transmission electron microscopy and scanning electron microscopy combined with mechanical testing experiments. A model is presented which describes crack generation and propagation at layer-layer and fiber-matrix interfaces as well as within matrix carbon layers with different textures. Intensive cracking occurs within high- and less frequently in medium- and low-textured pyrolytic carbon layers. In particular, fracture does not occur directly at the fiber-matrix interface but within the low-textured matrix layer deposited on the fiber. Crack deflection in interface regions between layers with different textures, crack deflection along boundaries of columnar grains in high -textured layers and at interfaces between polyhedral nanoparticles, and finally crack bridging within high -textured lamellae are cooperative failure mechanisms contributing to the toughness enhancement.  相似文献   

3.
The competition between crack penetration in the layers and cohesive delamination along interfaces is herein investigated in reference to laminate ceramics, with special attention to the occurrence of crack deflection and crack branching. These phenomena are simulated according to a recent variational approach coupling the phase field model for brittle fracture in the laminae and the cohesive zone model for quasi-brittle interfaces. It is shown that the proposed variational approach is particularly suitable for the prediction of complex crack paths involving crack branching, crack deflection and cohesive delamination. The effect of different interface properties on the predicted crack path tortuosity is investigated and the ability of the method to simulate fracture in layered ceramics is proven in relation to experimental data taken from the literature.  相似文献   

4.
The peel strength and delamination failure mode of coextruded microlayer sheets consisting of alternating layers of polycarbonate (PC) and poly(styrene-co-acrylonitrile) (SAN) were studied with the T-peel test. Four delamination modes were observed: two modes where the crack propagated along the PC–SAN interface and two other modes where the crack propagated through crazes in the SAN. The SAN layer thickness determined whether crack propagation was interfacial or through crazes. Crazing and crack propagation through crazes were observed only if the SAN layer was thicker than 1.5 μm. As the thickness of the SAN layer increased, the amount of crazing in front of the crack tip and the amount of craze fracture gradually increased; the peel strength increased accordingly. If the SAN layers were thinner than 1.5 μm and the PC layers were relatively thick, the crack propagated along a single interface. The peel strength for this delamination mode was the lowest and equal to about 90 J/m2, independent of layer thicknesses. This delamination mode came closest to providing a ”real” measure of the adhesive toughness of PC to SAN. With both interfacial and craze delamination, the crack could move from layer to layer if the PC was thin enough. Tearing of the relatively thin PC layers increased the peel strength of the multiple-layer delamination modes. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:793–805, 1998  相似文献   

5.
Summary: During the solidification of thin polymer layers different crack patterns can occur. There are several mechanisms of the development of regular crack defects and layer fractures. In case of self‐organization caused by Marangoni instability at the fluid layer surface the substrate can be periodically uncovered by spreading motions when dewetting hinders a back flow from the higher spots of the layer. Another type of crack patterns is generated from shrinkage processes and stress differences in the drying layer. Mostly these patterns are characterized by intersecting straight cracks. In this paper some examples of unusual shrinkage‐crack patterns in polymer layers are presented. Their propagation is independent on surface flow and surface deformations caused by the Marangoni effect, although the strength of polymer layers is impaired by the interfacial instability. Especially at layer edges or spots with thickness differences one can observe periodic wavy or circularly bend shrinkage‐crack structures. As a third type ramified surface defects are studied in thin layers. Often they only propagate at the layer surface.

Wavy shrinkage‐cracks in a PMMA layer with longish surface elevations.  相似文献   


6.
《Ceramics International》2016,42(7):8338-8350
Calculation of residual stress with finite element method is a basic work in failure mechanism investigation in thermal barrier coating (TBC) system because the residual stress is main driving force for crack nucleation and propagation. In this work, a complicated cosine curve with gradually increasing amplitude was used to simulate interface morphologies between layers so as to study the residual stress behavior during the cooling process in air plasma spraying TBC system by finite element method. The substrate, thermally grown oxide (TGO) and top coat (TC) are considered to be elastic and bond coat (BC) elastic-perfectly plastic. The material properties are all temperature dependent. The stress result comparison between models with and without substrate shows the effect of substrate on the residual stress distribution around layers interfaces should not be ignored as the substrate influences the value of normal residual stress as well as the stress distribution along undulating interfaces. Then the model with substrate was used to study the residual stress evolution along interfaces during cooling down from the temperature of 1000 °C to room temperature. The influences of the thickness of TGO and the amplitude and wavelength of interface on the residual stress distributions near interfaces were considered. The results show that these influences are very complicated. Meanwhile, it's found that the hybrid roughness parameter containing information for height and spacing is more suitable to describe the interface complicacy. The results facilitate understanding the failure mechanism relevant to interface morphology and TGO thickness.  相似文献   

7.
The paper describes the preparation of laminate piezo-ceramic composite consisting of Al2O3, ZrO2 and BaTiO3 layers and proves the idea of residual stresses utilization for crack deflection and handling with the brittleness of BaTiO3. The laminate was prepared by alternate electrophoretic deposition. Although the laminate was sintered at 1300 °C and consisted of layers having a density between 57 % (ZrO2) and 73 % (BaTiO3), the hardness and elastic modulus of layers corresponded to those of free sintered monolithic ceramics at a comparable level of porosity. The crack deflection at the interface between individual layers was observed having the same effect and magnitude as deflection observed in the case of fully dense Al2O3/ZrO2 laminates. An interlayer developed on the interface between Al2O3 and BaTiO3 had no negative impact on crack propagation.  相似文献   

8.
The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it is found that the layered composite is prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, is observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied is restricted to the intrinsic environmental-assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics.  相似文献   

9.
陶瓷叠层结构增韧设计的数值模拟及实验研究   总被引:11,自引:0,他引:11  
本研究尝度将微机作为辅助手段引入仿生陶瓷复合材料的增韧设计。基于多层梁模型,采用有限元数值模拟方法模拟了仿生陶瓷叠层结构的断裂行为和裂纹逐次从硬层基片向弱界面层基片向弱界面层的拐折和扩展。后处理程序显示了三点弯曲试件的裂纹扩展路径,相应的载荷-位移曲线和增韧效应(断裂功大幅度提高),还进一步分析了叠层陶瓷的韧性和强度受试件几何参数(硬软层层厚比,层数)和材料性能参数(断裂应变,Young氏模量比等  相似文献   

10.
With the aim of improving the toughness of ceramic materials, laminated composites have been successfully developed since Clegg et al. (1990) inserted weak interfaces using very thin graphite layers between silicon carbide sheets and obtained a composite that exhibited non-catastrophic fracture characteristics. The weak interface must allow the crack to deviate either by deflection or delamination; in other words, the interface must exhibit a fracture resistance that is lower than that of the matrix layer. In parallel, ceramic laminated composites with strong interfaces were developed in which the residual tensile and compressive stresses appeared in alternate layers during cooling after sintering. These composites are prepared by stacking ceramic sheets produced by lamination or tape casting or by the sequential formation of layers by slip casting, centrifugation or electrophoretic deposition. The techniques may be combined to obtain a composite with the most adequate configuration. This work presents a review about the obtainment of multilayered ceramic composites as a toughening mechanism of ceramic plates.  相似文献   

11.
《Ceramics International》2021,47(23):33140-33151
Thermal Barrier Coatings (TBC) are widely used to protect the metallic components that operate at harsh conditions of elevated temperatures and oxidizing environments. Thermally grown oxide (TGO) causes cracks formation in the top coat (TC) that may lead to spallation failure of TBC. This work investigates effect of pores and TGO thickness on crack initiation and propagation due to thermal mismatch between TBC layers. Image processing is used to convert an SEM image, including pores, into a finite element (FE) model. An FE model using XFEM implemented in ABAQUS was developed to investigate crack initiation and propagation for various TGO thicknesses considering the effect of plastic deformation of BC, TGO and substrate. Results show that presence of pores changes the critical sites for crack initiation from the TC/TGO interface to be around the pores within the TC. Crack initiation temperatures and crack lengths were found to be affected with both TGO thickness and pores.  相似文献   

12.
A multilayer coating consisting of consecutive layers of amorphous-silica, rutile-titania, and amorphous-silica was prepared on Hi-Nicalon fiber by chemical vapor deposition at 1050°C. It appeared that the silica and titania layers were strongly bonded to each other with no evidence of detachment and crack deflection at the interface region. The layered structure became morphologically unstable because of the growth of titania grains, the crystallization of the silica layers, and the oxidation of the fiber on exposure to 1200°C in air for 92 h.  相似文献   

13.
This paper investigates the role of material properties on crack path selection in adhesively bonded joints. First, a parametric study of directionally unstable crack propagation in adhesively-bonded double cantilever beam specimens (DCB) is presented. The results indicate that the characteristic length of directionally unstable cracks varies with the Dundurs' parameters characterizing the material mismatch. Second, the effect of interface properties on crack path selection is investigated. DCB specimens with substrates treated using various surface preparation methods are tested under mixed mode fracture loading to determine the effect of interface properties on the locus of failure. As indicated by the post-failure analyses, debonding tends to be more interfacial as the mode II fracture component in the loading increases. On the other hand, failures in specimens prepared with more advanced surface preparation techniques appear more cohesive for given loading conditions. Using a high-speed camera to monitor the fracture sequence, DCB specimens are tested quasi-statically and the XPS analyses conducted on the failure surfaces indicate that the effect of crack propagation rate on the locus of failure is less significant when more advanced surface preparation techniques are used. The effect of asymmetric interface property on the behavior of directionally unstable crack propagation in adhesive bonds is also investigated. Geometrically-symmetric DCB specimens with asymmetric surface pretreatments are prepared and tested under low-speed impact. As indicated by Auger depth profile results, the centerline of the crack trajectory shifts slightly toward the interface with poor adhesion due to the asymmetric interface properties. Third, through varying the rubber content in the adhesive, DCB specimens with various fracture toughnesses are prepared and tested. An examination of the failure surfaces reveals that directionally unstable crack propagation is more unlikely to occur as the toughness of the adhesive increases, which is consistent with the analytical predictions that were discussed using an energy balance model.  相似文献   

14.
The results of both uniaxial and biaxial flexure as well as toughness testing on actual commercial ceramic capacitor samples are reported. Necessary procedural adjustments are outlined for miniaturizing the applied-moment double-cantilever-beam test to accommodate these small samples. Strength and toughness testing showed that the metal electrodes lowered the fracture toughness and that the metal-ceramic interface was a preferred fracture path for crack propagation parallel to the electrodes. However, toughness did not clearly depend on crack propagation parallel or perpendicular to the electrodes, nor with flexural strengths. Flexural strengths were 0 to 40% lower, with the electrodes perpendicular to the tensile surface vs. parallel to the tensile surface. Fractures initiated from machining (or impact) flaws, or voids of various sizes, shapes, and locations, thus explaining the poor correlation between strength and toughness. Biaxial flexure tests of dielectric specimens of various sizes indicate that such a test could be scaled down and "calibrated" for actual testing of capacitors; e.g., a decrease in strength with increasing specimen thickness to support diameter ratio is indicated.  相似文献   

15.
In the present work, laminar ceramic structures formed by layers of alumina and partially stabilized zirconia were fabricated by water-based tape casting. Rheological, physical and mechanical properties of slurries and laminates were evaluated. The laminates consisted of stacked alumina and zirconia green tapes produced by thermopressing. Pyrolysis was carried out at 450 °C and sintering at 1500 °C. The alumina/zirconia laminates were studied for a better understanding of the formation behavior and crack propagation at the laminate interface. The flexural strength values of laminates depend on the stress state on their surface. The laminates with the highest amount of zirconia layers presented low strength values (6.7 MPa), while the laminates with more alumina layers had a higher strength level (57.7 MPa). This is because these laminates have alumina layers on the surface which are in a state of residual compressive stress.  相似文献   

16.
This paper investigates the role of material properties on crack path selection in adhesively bonded joints. First, a parametric study of directionally unstable crack propagation in adhesively-bonded double cantilever beam specimens (DCB) is presented. The results indicate that the characteristic length of directionally unstable cracks varies with the Dundurs' parameters characterizing the material mismatch. Second, the effect of interface properties on crack path selection is investigated. DCB specimens with substrates treated using various surface preparation methods are tested under mixed mode fracture loading to determine the effect of interface properties on the locus of failure. As indicated by the post-failure analyses, debonding tends to be more interfacial as the mode II fracture component in the loading increases. On the other hand, failures in specimens prepared with more advanced surface preparation techniques appear more cohesive for given loading conditions. Using a high-speed camera to monitor the fracture sequence, DCB specimens are tested quasi-statically and the XPS analyses conducted on the failure surfaces indicate that the effect of crack propagation rate on the locus of failure is less significant when more advanced surface preparation techniques are used. The effect of asymmetric interface property on the behavior of directionally unstable crack propagation in adhesive bonds is also investigated. Geometrically-symmetric DCB specimens with asymmetric surface pretreatments are prepared and tested under low-speed impact. As indicated by Auger depth profile results, the centerline of the crack trajectory shifts slightly toward the interface with poor adhesion due to the asymmetric interface properties. Third, through varying the rubber content in the adhesive, DCB specimens with various fracture toughnesses are prepared and tested. An examination of the failure surfaces reveals that directionally unstable crack propagation is more unlikely to occur as the toughness of the adhesive increases, which is consistent with the analytical predictions that were discussed using an energy balance model.  相似文献   

17.
SiC-monofilament-reinforced SiC or Si3N4 matrix composites were fabricated by hot-pressing, and their mechanical properties and effects of filaments and filament coating layers were studied. Relationships between frictional stress of filament/matrix interface and fracture toughness of SiC monofilament/Si3N4 matrix composites were also investigated. As a result, it was confirmed experimentally that in the case of composites fractured with filament pullout, the fracture toughness increased as the frictional stress increased. On the other hand, when frictional stress was too large (>about 80 MPa) for the filament to be pulled out, fracture toughnesses of the composites were almost the same and not so much improved over that of Si3N4 monolithic ceramics. The filament coating layers were found to have a significant effect on the frictional stress of the SiC monofilament/Si3N4 matrix interface and consequently the fracture toughness of the composites. Also the crack propagation behavior in the SiC monofilament/Si3N4 matrix composites was observed during flexural loading and cyclic loading tests by an in situ observation apparatus consisting of an SEM and a bending machine. The filament effect which obstructed crack propagation was clearly observed. Fatigue crack growth was not detected after 300 cyclic load applications.  相似文献   

18.
Alumina-matrix eutectic in situ composite ceramics present excellent high-temperature mechanical properties, which have been considered as promising next-generation ultra-high temperature structural materials. A modified laser surface processing is developed to in situ fabricate highly-dense Al2O3/YAG bulk nanoeutectic ceramics with large size and homogeneous three-dimensional network of nanoeutectic microstructure by introducing two-side remelting and high-temperature preheating. The crack and porosity are avoided, and the eutectic structure achieves a good continuous growth between two solidified layers. The eutectic phases show sharp interface bonding with a defined orientation relationship. The dislocations and crack deflection at high-density phase interfaces importantly contribute to the enhanced fracture toughness.  相似文献   

19.
The effect of interface adhesion on the failure characteristics of brittle-ductile layered material was experimentally investigated. Single-edge-notched fracture specimens were prepared by bonding two Homalite-100 layers to a thin aluminum layer using three different types of adhesives. The specimens were loaded under three-point bending and photoelasticity was used for full-field observation of the failure process. Fracture tests revealed two competing modes of failure: delamination along the Homalite-aluminum interface, and crack re-initiation in the Homalite layer across the reinforcing aluminum layer. The failure modes were directly influenced by the characteristics of the adhesive bond. Maximum load retention and energy dissipation capability during the fracture process was observed for a urethane based adhesive that formed an interfacial bond that was resistant to delamination, and additionally exhibited low modulus and large strain-to-failure, thereby suppressing crack re-initiation.  相似文献   

20.
Laminates with alternating layers are well known from nature. The strongly bonded alumina/zirconia (Al2O3/ZrO2) layers can combine high fracture resistance with high strength and stiffness when properly tailored. The presence of compressive residual stresses formed in Al2O3 layers can suppress and deflect cracks propagating through the layers. The crack path is governed by both the elastic properties and the internal stress field of individual layers. The laminates with various layer-thickness ratios ranging from 0.1 to 3 were used to investigate the effect of residual stresses and influence of crack formation pattern on the crack path development. The indentation surface cracks observed in various alumina-zirconia laminates exhibit the same crack deflection independently on the level of internal stresses. The crack deflection observed on the fracture surfaces of bending specimens was related to the indentations cracks. The complicated crack path was explained experimentally by 3D reconstruction with the support of numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号