首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The rewritable azo‐dye photoalignment (ORW) of liquid crystals (LCs) for application in optical rewritable electronic paper has been investigated. It was observed that a periodic change in the azimuthal aligning direction with polarized UV light (365 nm) brings about homeotropic alignment, while utilization of visible light (450 nm) does not affect the LC tilt angle. The wavelength dependence of the ORW photoalignment result and the behavior of the photoinduced anisotropy was explored. The dark amplification of film anisotropy after exposure was observed, which is believed to be the relaxation process related to hydrogen bonding in azo‐dye film. New material, CD1, for azo‐dye rotation photoalignement that possesses a high azimuthal anchoring energy (about 2 × 10?4 J/m2) was found.  相似文献   

2.
Abstract— The alignment properties of the azo‐dye photo‐alignment material SD‐1/SDA‐2 on plastic substrates are investigated. Important liquid‐crystal cell parameters, such as azimuthal and polar anchoring energy, pretilt angle, voltage holding ratio, and the corresponding electro‐optical properties are presented. Excellent alignment with high anchoring energy can be achieved with a polarized UV dose less than 1.0 J/cm2. A reflective six‐digit flexible passive‐matrix‐driven TN‐LCD for smart‐card applications showing excellent electro‐optical properties is demonstrated.  相似文献   

3.
Preliminary studies of photonic crystal fibers (PCFs) partially infiltrated with photo‐aligned ferroelectric liquid crystals (FLCs) under the influence of external electric field are reported. The proper alignment of the FLC molecules is achieved by generating a photo‐aligning layer on the inner side of the PCF microcavities. The sulfonic azo dye, which is used as an alignment layer, offers a variable anchoring energy depending on the irradiation energy, and thus, a good control on the FLC alignment inside microchannels is possible. Moreover, a state of polarization of the light being guided inside the PCF infiltrated selectively with FLC changes under the influence of external electric field.  相似文献   

4.
Abstract— The photoaligning properties of the popular photoaligning material polyvinyl‐4(fluorocinnamate) (PVCN‐F) are presented. The aligning quality and azimuthal and zenithal anchoring energy were measured and the drift of the easy orientation axis (gliding effect) on the PVCN‐F surface, depending on UV exposure, was studied. Special attention is paid to unraveling the contribution of the adsorption liquid‐crystal molecules onto the aligning surface to the anchoring properties of PVCNF and measuring the drift of the easy orientation axis over the PVCN‐F surface. It is shown that a relatively weak azimuthal anchoring energy (Waz ~ 10?7 ? 10?5 J/m2) leads to strong drift of the easy axis in the azimuthal plane that was observed in a moderate (~0.1–0.3 T) magnetic field. A much stronger polar anchoring (Wzen ~ 10?4 J/m2) allowed us to observe the essential gliding of the easy axis in the zenithal plane in a rather strong electric field (~5 V/μm).  相似文献   

5.
The liquid‐crystal (LC) alignment properties of polyamide films exposed to ultraviolet (UV) light were investigated. It was found that the uniform and stable alignment of LC molecules was achieved on films of aromatic polyamides exposed to linearly polarized UV light, even though these polymers contained no common photoreactive group such as cinnamoyl, coumarin, or azo chromophore. The alignment was induced in the same direction, which was perpendicular to the electric‐field vector of the linearly polarized light. The change in the UV‐visible absorption spectra before and after UV exposure suggested that the photoreaction of aromatic polyamide occurred only on the film surface, and that even such a small change in the film was enough to induce uniform alignment of the LC molecules. Furthermore, it was suggested that the photoreaction of this system was accelerated in the presence of oxygen. This paper also deals with the effect of the chemical structure of polymers on their LC photoalignment characteristics, i.e., the sensitivity of the photoinduced LC alignment. As a result, polymer materials with excellent LC photoalignment sensitivity have been determined, which could induce the uniform and unidirectional LC alignment by irradiation of 0.2–0.5 J‐cm?2 of linearly polarized 313‐nm light. In addition, the alignment of the LC cell was found to be thermally and optically stable.  相似文献   

6.
Abstract— Cholesteric liquid crystals automatically form one‐dimensional photonic crystals. For a photonic crystal in which light‐emitting moieties are embedded, unique properties such as microcavity effects and simultaneous light emission and light reflection can be expected. Three primary‐color photonic‐crystal films were prepared based on cholesteric liquid crystal in which fluorescent dye is incorporated. Microcavity effects, i.e., emission enhancement and spectrum narrowing, were observed. Two types of demonstration liquid‐crystal displays (LCDs) were fabricated using the prepared photonic‐crystal films in a backlight system. One is an area‐color LCD in which a single photonic‐crystal layer is used for each color pixel and the other is a full‐color TFT‐LCD in which three stacked photonic‐crystal layers are used as light‐conversion layers. The area‐color LCD was excited by using 365‐nm UV light, and the full‐color TFT‐LCD was excited by using 470‐nm blue LED light. Because of the photonic crystal's unique features that allow it to work as light‐emitting and light‐reflecting layers simultaneously, both LCDs demonstrate clear readable images even under strong ambient light, such as direct‐sunlight conditions, under which conventional displays including LCDs and OLED displays cannot demonstrate clear images. In particular, an area‐color LCD, which eliminated color filters, gives clear images under bright ambient light conditions even without backlight illumination. This fact suggests that a backlight system using novel photonic‐crystal layers will be suitable for energy‐efficient LCDs (e2‐LCDs), especially for displays designed for outdoor usage.  相似文献   

7.
Abstract— Liquid‐crystal (LC) photoalignment using azo dyes is described. It will be shown that this photoaligning method can provide a highly uniform alignment with a controllable pretilt angle and strong anchoring energy of the LC cell, as well as a high thermal and UV stability. The application of LC photoalignment to the fabrication of various types of liquid‐crystal displays, such as VAN‐LCDs, FLCDs, TN‐LCDs, and microdisplays, on glass and plastic substrates is also discussed. Azo‐dye photoaligned super‐thin polarizers and phase retarders are considered as new optical elements in LCD production, in particular for transflective displays.  相似文献   

8.
Abstract— A flexible color LCD panel driven by organic TFTs (OTFTs) was successfully demonstrated. A pentacene OTFT with an anodized Ta2O5 gate insulator, which can be operated at low voltage, was developed. In order to improve the electrical performance of the OTFT, the gate insulator was surface treated by processes such as O2 plasma, UV light irradiation, and hexamethyldisilane treatments. The fabricated OTFT exhibited a mobility of 0.3 cm2/V‐sec and a current on/off ratio of 107 with a low operating drain voltage of ?5 V. A fast‐response‐time flexible ferroelectric LCD, which contains polymer networks and walls, was integrated with the OTFTs by using a lamination and a printing technique. As a result, color images were achieved on the fabricated panel by using a field‐sequential‐color method at a low driving voltage of less than 15 Vpp.  相似文献   

9.
Abstract— Solution‐processed double‐layered ionic p‐i‐n organic light‐emitting diodes (OLEDs), comprised of an emitting material layer doped with an organometallic green phosphor and a photo‐cross‐linked hole‐transporting layer doped with photo‐initiator is reported. The fabricated OLEDs were annealed using simultaneous thermal and electrical treatments to form a double‐layered ionic p‐i‐n structure. As a result, an annealed double‐layered OLED with a peak brightness over 20,000 cd/m2 (20 V, 390 mA/cm2) and a peak efficiency of 15 cd/A (6 V, 210 cd/m2) was achieved.  相似文献   

10.
Abstract— A spatially and temporally scanning backlight consisting of ten isolated micro‐structured light guides has been developed to be combined with a fast‐response optically‐compensated‐bend‐mode field‐sequential‐color LCD in which the liquid‐crystal cell does not contain color filters. The sequential fields of three primary colors are generated by illumination of the red‐, green‐, and blue‐light‐emitting diodes, each illuminating for one‐half of the field, resulting in a luminance of 200 cd/m2 for the LCD. The effect of light leakage between the blocks in the scanning backlight in field‐sequential‐color applications was measured and will be described.  相似文献   

11.
Abstract— The stability and reliability of oxide‐semiconductor TFTs were investigated. The contact material to the oxide semiconductor affected the thermal stability of the TFT, and a molybdenum‐contact source/drain showed good stability. And the passivating film and TFT structure affected the stability against bias stress and humidity stress, and dc‐sputtered Al2O3 passivation and fully covered channel structure with an etching stopper or source/drain showed good reliability. Moreover, high photo‐stability was confirmed by the bias‐enhanced photo‐irradiation stress test. An 11.7‐in.‐diagonal qHD AMOLED display was demonstrated to provide an applicable solution for a large‐sized OLED and an ultra‐high‐definition LCD‐TV mass production.  相似文献   

12.
Abstract— We report on a new method of fabricating a vertically aligned multi‐domain liquid‐crystal display (LCD) using surface‐relief gratings. A linear array of surface‐relief gratings was produced by using a photosensitive polymer material coated on glass substrates by the illumination of the UV light through a photomask. The LCD cell was assembled with two substrates with polymer gratings in such way that the grating vectors were orthogonal to each other. In this LCD configuration, the nematic molecules were reoriented by distortions of an external electric field at the grating surfaces to make four different domains. The LC cell with self‐aligned four domains shows excellent extinction in the off‐state and wide‐viewing characteristics in the on‐state.  相似文献   

13.
Abstract— Even though dyes have a fine resolution and good chromaticities, they are not widely used as coloring materials for color filters (CFs) due to their low thermal stability and chemical resistance. A series of azo‐dye derivatives, which consist of two cross‐linkable acrylate or methacrylate groups to improve thermal and chemical properties, have been synthesized and used to fabricate color filters. The spectral properties and chemical/thermal stabilities of the fabricated CFs were investigated by comparing dye‐based CFs, without a complicated dispersion process, but with pigment‐based CFs using dispersed pigment. Also, more properties including the development test and surface morphologies lithographic properties were studied. The synthesized azo dyes were characterized by elemental analysis, UV‐visible spectra, IR, mass, and 1H‐NMR spectra.  相似文献   

14.
A process to make self‐aligned top‐gate amorphous indium‐gallium‐zinc‐oxide (a‐IGZO) thin‐film transistors (TFTs) on polyimide foil is presented. The source/drain (S/D) region's parasitic resistance reduced during the SiN interlayer deposition step. The sheet resistivity of S/D region after exposure to SiN interlayer deposition decreased to 1.5 kΩ/□. TFTs show field‐effect mobility of 12.0 cm2/(V.s), sub‐threshold slope of 0.5 V/decade, and current ratio (ION/OFF) of >107. The threshold voltage shifts of the TFTs were 0.5 V in positive (+1.0 MV/cm) bias direction and 1.5 V in negative (?1.0 MV/cm) bias direction after extended stressing time of 104 s. We achieve a stage‐delay of ~19.6 ns at VDD = 20 V measured in a 41‐stage ring oscillator. A top‐emitting quarter‐quarter‐video‐graphics‐array active‐matrix organic light‐emitting diode display with 85 ppi (pixels per inch) resolution has been realized using only five lithographic mask steps. For operation at 6 V supply voltage (VDD), the brightness of the display exceeds 150 cd/m2.  相似文献   

15.
A high‐intensity backlight for use with large LCD panels has been developed. It supports the performance and environmental requirements of a display intended for outdoor applications. This backlight technology uses an inductively coupled electrodeless fluorescent lamp with a lifetime of 100,000 hours, instant starting at ?40°C and a stable light output over a temperature span of 70°C. The backlight design has been optimized for luminance uniformity and efficiency within a display depth of 6 in. A 21.3‐in. LCD monitor, using this backlight technology, provides an image brightness of 2000 cd/m2 from a single 150‐W lamp.  相似文献   

16.
Abstract— This article addresses spontaneously polarized light emission from GaN‐based light‐emitting diodes (LEDs) fabricated on electrically non‐polar crystallographic orientations and application of spontaneously polarized emission for backlighting of liquid‐crystal displays (LCDs). The first half of the article describes polarized light emission from GaN‐based LEDs and its role in solid‐state lighting technology. The second half reports on our experimental work to explore the potential of non‐polar LEDs for LCD backlighting applications. Optical transmission of non‐polar LED emission was characterized through a liquid‐crystal layer. Extinction ratios of 0.21 were measured between zero and an applied bias voltage to the liquid‐crystal cells. These extinction ratios are not particularly high yet; nevertheless, the experiment has demonstrated the potential of such non‐polar LEDs for LCD backlighting.  相似文献   

17.
We report that a solution‐processed vanadium pentoxide (V2O5) layer can be utilized as an effective and stable hole injection layer in organic light‐emitting diodes and polymer light‐emitting diodes instead of polyethylene dioxythiophene : polystyrenesulfonate (PEDOT : PSS). The organic light‐emitting diode and polymer light‐emitting diode with the V2O5 layer have driving voltages that are 2.2 and 0.3 V lower for 1000 cd/m2, respectively, than the devices with PEDOT : PSS. In addition, the devices with the V2O5 layer show improved operational stability compared with the devices with PEDOT : PSS. Therefore, a solution‐processed V2O5 layer can be utilized as an effective and stable hole injection layer instead of PEDOT : PSS.  相似文献   

18.
High‐mobility and highly reliable self‐aligned top‐gate oxide thin‐film transistor (TFTs) were developed using the aluminum reaction method. Al diffusion to the oxide semiconductor and homogenization of the oxygen concentration in the depth direction after annealing were confirmed by laser‐assisted atom probe tomography. The high mobility of the top‐gate TFT with amorphous indium tin zinc oxide channel was demonstrated to be 32 cm2/V s. A 9.9‐in. diagonal qHD active‐matrix organic light‐emitting diode (AM‐OLED) display was fabricated using a five‐mask backplane process to demonstrate an applicable solution for large‐sized and high‐resolution AM‐OLEDs.  相似文献   

19.
Abstract— A ferroelectric liquid‐crystal (FLC) passively addressed 64 × 64 display based on the photo‐alignment technique has been developed. The display matrix has dimensions of 33 × 33 mm2, and the FLC layer thickness is about 5 μm. Asymmetric boundary conditions, when only one of ITO surfaces of the display matrix is covered with the photo‐aligning layer while another one is not, have been used for providing both high contrast ratio and steady multiplex operation. The electro‐optical performance of the 5‐μm FLC display is presented, including bistable switching in static operation, optimization in multiplexing operation, and gray‐scale generation.  相似文献   

20.
Abstract— Several white‐OLED structures with a high color‐rendering index (CRI) were investigated for lighting applications. A two‐unit fluorescent/phosphorescent hybrid white OLED achieved an excellent CRI of 95, high luminous efficacy of 37 lm/W, and long lifetime of over 40,000 hours at 1000 cd/m2. White‐OLED lighting panels of 8 × 8 cm for high‐luminance operation were fabricated, and a stable emission at 3000 cd/m2 was confirmed. Quite a small variation in chromaticity in a different directions was achieved by using an optimized optical device structure. With a light‐outcoupling substrate, a higher efficacy of 56 lm/W, high CRI of 91, and longer half‐decay lifetime of over 150,000 hours at 1000 cd/m2 was achieved. All‐phosphorescent white OLEDs placed on the light‐outcoupling substrate show a high CRI of 85 and higher efficacy of 65 lm/W with a fairly good half‐decay lifetime of over 30,000 hours. With a further voltage reduction and a high‐index spherical extractor, 128 lm/W at 1000 cd/m2 has been achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号