首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
为了进一步提高超级电容器在低温下的能量密度,制备了双电荷电解质N,N-1,4-二乙基三乙烯基二胺四氟硼酸盐(DEDABCO-BF4)。以四乙基铵四氟硼酸盐(TEA-BF4)作为电解质,以DEDABCO-BF4为电解质添加剂,二者按照摩尔比9∶1混合,再以碳酸丙烯酯(PC)为溶剂、以乙腈(AN)为共溶剂制备了一系列不同溶剂配比的二元电解液PAXY(X、Y为PC与AN的质量比),通过循环伏安、恒流充放电、交流阻抗等探究了双电荷电解质在低温下的电化学性能。结果表明:PA11电解液组装的超级电容器可在-40℃下实现良好的倍率性能,在2.7 V、5 000 mA/g条件下,容量保持率为65%。此外,PA11电解液还进一步将电容器工作电压扩大到3.5 V,获得了110 F/g的比电容、47.87 W·h/kg的最大能量密度和5 850 W/kg的最大功率密度。  相似文献   

2.
采用N-甲基咪唑、溴代正丁烷为原料,1,1,1-三氯乙烷为溶剂合成中间体[bmim]Br,再利用[bmim]Br和四氟硼酸钠以甲醇为溶剂合成离子液体[bmira]BF4(1-丁基-3-甲基咪唑四氟硼酸盐),离子液体[bmim]BF4结构均经IR、1HNMR予以表征.将[bmim]BF4应用于涤纶织物的抗静电整理.分析了[bmim]BF4的用量、轧余率、焙烘温度对涤纶织物抗静电性能的影响,并利用TiO2/SiO2水溶胶进行处理,以提高离子液体整理涤纶织物的抗静电性能的耐久性.  相似文献   

3.
采用量子化学方法研究了三种离子液体1-丁基-3-甲基咪唑硝酸盐([BMIM]NO3),1-丁基-3-甲基-咪唑四氟化硼酸盐([BMIM]BF4)和1-丁基-2,3-二甲基咪唑四氟化硼酸盐([BDMIM]BF4)的局部和全局活性.研究表明其缓释效率顺序为[BMIM]NO3[BMIM]BF4[BDMIM]BF4,这与电化学和失重方法测试的实验结果一致.建立了离子液体的量子化学参数与其缓蚀效率之间的定量构效关系,计算结果与实验符合很好.采用分子动力学模拟方法研究了1 mol/L的盐酸溶液中三种离子液体在碳钢表面的吸附行为和缓释机理,发现三种离子液体的阳离子中的咪唑环都平行地吸附在铁表面上,阴离子NO-3与铁表面的相互作用比BF-4与铁表面相互作用强.研究结果可为今后设计和筛选绿色离子液体缓蚀剂提供理论指导.  相似文献   

4.
合成了亲水性和疏水性的饱和杂环类离子液体N-十六烷基-N-甲基四氢吡咯烷溴化物与四氟合硼酸盐,采用偏光显微镜、变温X射线衍射仪和热化学等方法,研究两类离子液体液晶结构、自组装过程和相转变等特性,研究负离子对饱和杂环类离子液体自组装行为的影响.结果发现,该两种离子液体均可在熔点以上形成层状液晶,负离子结构与大小对离子液体液晶的结构与性质具有非常重要的影响,BF4-比Br-体积大,使吡咯烷环和环上的长碳链以较大的间隔排列,形成分子在近晶平面层内有序分布,结构非常接近固态的近晶型液晶.  相似文献   

5.
孔结构对煤基活性炭电化学性能的影响   总被引:1,自引:1,他引:0  
以煤为前驱体,KOH为活化剂制备系列煤基活性炭电极材料.采用N_2吸附法及电化学测试对活性炭的孔结构和电化学性能进行了表征,研究了孔结构对活性炭电极材料的电化学性能的影响.结果表明,采用化学活化法可制备出比表面积1 048~3 581 m~2/g、中孔率7%~91%的活性炭电极材料.在3 mol/L KOH无机电解液体系及1 mol/L(C_2H_5)_4NBF_4/碳酸丙烯酯(PC)有机电解液体系中,活性炭电极材料的比电容分别达到322 F/g,190 F/g.2~3 nm的中孔对电解质离子在电极材料中的扩散有着重要作用,可以有效降低电解液的扩散阻力,提高电极材料比表面积的利用率,从而增强电容器的电化学性能.  相似文献   

6.
室温下合成离子液体N-甲基-N-丙基哌啶双(三氟甲烷磺酰)亚胺(N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide,PP13TFSI)和N-甲基-N-丙基吡咯烷双(三氟甲烷磺酰)亚胺(N-methylN-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide,PYR13TFSI),并与有机溶剂和双(三氟甲烷磺酰)亚胺锂(lithium bis(trifluoromethanesulphoyl)imide,Li TFSI)混合制备成复合电解质,研究该电解质的热稳定性和不燃性能.发现将其与锂离子电池三元正极材料镍钴锰酸锂Li Co1/3Mn1/3Ni1/3O2和锂片组装成CR-2032纽扣电池(Li Co1/3Mn1/3Ni1/3O2/电解质/锂),在0.1 C倍率下首次放电比容量为154.5 m A·h/g、库伦效率达到85.5%.该复合电解质具有宽的电化学窗口、高的热稳定性、不燃性和良好的充放电循环性能.  相似文献   

7.
离子液体以其独特的性质广受关注,被称为"绿色设计者溶剂",人们对其潜在的应用价值做了大量的研究.实验采用HyperChem软件构建了1-乙基-3-甲基咪唑四氟硼酸盐([EMIM][BF4])离子液体分子结构的3D模型,并用PM3法进行预优化,然后应用Gaussian 03w程序分别在RHF/6.31G(d)和BLYP/6-31G(d)计算水平上进行量子化学计算,并经振动频率和强度分析得到理论红外谱图.结果表明,[EMIM][BF4]离子液体的阴阳离子存在着氢键等弱相互作用.  相似文献   

8.
在钠离子电池中电解液是关键组成部分,其内部的溶剂化结构对固体电解质界面(SEI)的形成和组成具有重要影响,并直接影响钠离子电池的电化学性能。文章探讨钠离子电池电解液中溶剂化结构对SEI性质和电池性能的影响机制,总结高浓度电解液溶剂化结构研究的相关成果,探讨溶剂浓度、种类及溶剂化结构对SEI的影响,阐述了电解液中阴阳离子、溶剂分子间作用与钠离子电池性能之间的构效关系。  相似文献   

9.
采用锌金属有机配合物(MOF-5)煅烧得到的多孔碳材料作为阴极材料,以锌箔作为阳极,硫酸锌中系水溶液作为电解液构建了锌离子复合电容器。在电化学性能测试中,锌离子复合电容器表现出了优异的电化学性能,如高放电比容量(在1 A·g~(-1)的电流密度下放电比容量为55 mAh·g~(-1)),良好的倍率性能,高能量密度(46 Wh·kg~(-1)),优异的循环稳定性(在1 A·g~(-1)的电流密度下进行8 000次充放电循环后,锌离子复合电容器的放电比容量保持率接近100%)。  相似文献   

10.
采用循环伏安(CV)、电化学阻抗(EIS)和恒流充放电测试的方法研究了双乙二酸硼酸锂(LiBOB)电解液体系在常温下与正负极材料的兼容性及正极材料的倍率性能,并考察了乙腈(ACN)对LiBOB电解液体系电化学性能的影响.结果表明:正极材料LiFePO4在LiBOB电解液体系中,表现出良好的电化学性能,添加乙腈能够改善其充放电循环稳定性.负极材料SCMG(shape controlled micro-graphite)在LiBOB电解液体系中能够形成稳定有效的固体电解质界面(SEI)膜,且首次循环的可逆比容量略有提高,但乙腈的加入使循环的稳定性变差.  相似文献   

11.
石墨烯/聚苯胺复合材料作为超级电容器的自支撑电极材料具有巨大的潜力。以磷酸为磷源的水热还原法制备磷掺杂还原氧化石墨烯(P-rGO)水凝胶,再以P-rGO水凝胶为基质在3种溶剂(正己烷、水和四氯化碳)中负载聚苯胺,合成磷掺杂还原氧化石墨烯/聚苯胺(P-rGO/PANI)复合水凝胶。利用X射线衍射、扫描电子显微镜表征产物的微观形貌与结构,运用电化学工作站测试该材料的电化学性能。以1 mol/L的H2SO4溶液为电解质,经过1 000圈循环测试后,材料的比电容保持率均为81%以上,表明其有作为超级电容器电极材料的潜质。该研究为开发出低成本、高性能的超级电容器电极材料提供了实验依据和理论指导。  相似文献   

12.
为研究乙酸和乙醇在以1-己基吡啶四氟硼酸盐离子液体作溶剂和催化剂的反应动力学,利用实验进行了测定,并对实验数据进行拟合,得出了65、75、90℃下正反应速率常数。并在此基础上,测定了温度、1-己基吡啶四氟硼酸盐离子液体浓度对反应速率的影响。n(乙酸)∶n(乙醇)∶n(离子液体)=8∶8∶1,65~90℃时,反应速率为-rHAc=8.06×10-4exp(-4.83×103/T)(c2HAc-c2EtOAc/4),反应活化能为:E=40.15 kJ/mol。  相似文献   

13.
采用液晶模板法制备Co3O4纳米薄膜,用循环伏安法和恒流充放电测试方法,表征分析其微观结构和电化学性能。结果表明:Co3O4薄膜是多晶体,呈分级多孔结构,该结构有利于电子和离子的扩散,可显著改善超级电容器的比电容,增强电容保持能力,是一种优良的超级电容器电极材料。  相似文献   

14.
采用液晶模板法制备Co3O4纳米薄膜,用循环伏安法和恒流充放电测试方法,表征分析其微观结构和电化学性能。结果表明:Co3O4薄膜是多晶体,呈分级多孔结构,该结构有利于电子和离子的扩散,可显著改善超级电容器的比电容,增强电容保持能力,是一种优良的超级电容器电极材料。  相似文献   

15.
碳基凝胶聚合物电解质双电层电容器的研究   总被引:1,自引:0,他引:1  
为了克服液体电解液电容器的漏液和安全问题,以活性炭作电极材料,丙烯腈作聚合物单体,分别以碳酸丙烯酯 碳酸乙烯酯、碳酸二甲酯 碳酸乙烯酯和碳酸甲乙酯 碳酸乙烯酯的混合液作增塑剂,高氯酸锂为支持电解质盐,采用内聚合法制备了PAN基凝胶聚合物电解质双电层电容器(GPE-EDLCs).采用交流阻抗法测量了凝胶聚合物电解质(GPE)的离子电导率.采用交流阻抗、循环伏安、恒流充放电等测试方法研究了GPE-EDLCs的性能,并与有机电解液双电层电容器(LOE-EDLCs)进行了比较.结果表明,PAN基GPE的电导率在室温下为6.51~8.94 mS·cm-1,PAN基GPE-EDLCs的工作电压为2.5 V,电容器的比容量为43.9~47.4F/g(i=0.5 mA/cm2),能量密度为128.8~148.1 J/g,与LOE-EDLCs性质相近.  相似文献   

16.
为提高超级电容器用的活性炭电化学性能,通过物理化学两步活化法制备煤基活性炭.以太西无烟煤为原料,通过成型和炭化后,用CO_2物理活化制得柱状活性炭(AC-1).将AC-1酸洗脱灰,并用KOH水溶液浸渍,进行第2步化学活化,制得超级电容器用的煤基活性炭(AC-2),两步活化后总收率为45.18%.将活性炭制备成电极材料,并在三电极和双层电容器体系下进行电化学性能测试.结果表明:在KOH电解液浓度为6mol/L,电流密度为0.5A/g时,三电极体系下,比电容由68.5F/g(AC-1)提高到122.5F/g(AC-2),在纽扣式超级电容器体系下,比电容由75F/g(AC-1)提高到165.5F/g(AC-2),且AC-2具有良好的长循环稳定性,经过5 000次的循环后电容量几乎无衰减.与物理活化所得活性炭相比,物理化学两步活化所得活性炭的总孔容和中孔率明显增加,其作为电极材料的电化学性能显著提高.  相似文献   

17.
以萝藦(Metaplexis japonica,一种草本缠绕植物)种子顶端的白色长绢毛为生物质碳的前驱体,氢氧化钾为活化剂,制备了管状的多孔生物质碳材料(AMJ).再通过水热法和硫化过程在多孔生物质碳材料上原位生长Ni Co2S4纳米颗粒.通过X射线衍射(XRD)、扫描电子显微镜(SEM)和N2吸附-脱附分析表征了其微观形貌和结构.呈管状结构的多孔生物质碳材料的比表面积为2 831 m2/g,这有利于电解液/电极界面电荷的积累,同时促进电解液离子的扩散和传输.将AMJ/Ni Co2S4复合材料用作超级电容器电极材料,在三电极体系中进行电化学性能测试.在扫描速度为5 m V/s时,AMJ/Ni Co2S4电极材料的最高比电容可达1 041.6 F/g.同时,与纯Ni Co2S4电极材料相比具有良好的倍率性能和循环稳定性.  相似文献   

18.
超级电容器即电化学电容器,是近年来发展起来的一种新型储能元件,通过离子吸附(双电层电容)或氧化还原法拉第反应(赝电容)导致电荷在电极中的储存,电荷储存机理和纳米材料的快速发展使得超级电容器的性能得到显著提高。介绍了近些年超级电容器电极材料的研究进展,从炭素材料、过渡金属氧化物和导电聚合物这3类基础材料出发,结合纳米技术并由此制得的纳米材料,综合分析了高性能超级电容器及其电极材料的发展趋势。  相似文献   

19.
为了提高双金属氧化物电极材料的电化学性能和循环稳定性,通过简单省时的溶剂热煅烧法制得多孔铁钴双金属氧化物(FexCoyO4)纳米球,并探究加入不同比例的铁钴对电化学性能的影响;通过XRD、SEM和XPS对所得的电极材料进行表征,利用电化学工作站和蓝电电池测试系统等进行电化学性能测试。结果表明:多孔的双金属氧化物纳米球可以有效地提高超级电容器的电化学性能,同时还具有超长的循环寿命;当加入的铁钴比例为1∶1时,所制备的FeCoO4多孔纳米球电极表现出最大比电容596 F/g;将电极材料组装为对称超级电容器,测试其循环稳定性,在3 A/g的电流密度下循环20 000圈后,其容量保持率可增加至120%。  相似文献   

20.
离子液体辅助TiO_2/蒙脱石材料的制备与性能研究   总被引:1,自引:0,他引:1  
在1-丁基-3-甲基咪唑四氟硼酸盐[Bmim]BF4离子液体中合成了TiO2,经负载蒙脱石后,制备成TiO2/蒙脱石纳米复合材料.利用X射线衍射(XRD),差热分析法(TG-DSC)和红外光谱(FTIR)等分析手段对复合材料进行结构表征。结果表明,离子液体合成的TiO2粒径小,负载后的TiO2/蒙脱石复合材料耐热性较好,更加稳定;钛土比为1.5mmol/g,煅烧温度为400℃时,复合材料性能最佳,光照时间达到150min,催化剂对甲基橙的降解率为100%;将复合催化材料用于蓝藻水溶液的处理,效果较纯TiO2显著,显示出良好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号