首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王超  居勤章 《炼铁》2020,(1):7-11
简要分析了高炉低镁铝比生产的可行性,重点对宝钢2号高炉通过逐步减少烧结矿白云石配比,在渣中(Al2O3)含量不变的情况下降低(MgO)含量的工业试验进行了阐述。2号高炉试验过程中出现了炉缸侧壁温度波动、高炉压差升高和风口破损明显增多的情况,没有达到预期的效果。大型高炉降低镁铝比试验,建议选取75%以上的烧结矿比例,并将镁铝比控制在0.35~0.40。  相似文献   

2.
姜鑫  沈峰满  韩宏松  龙防  郑海燕  高强健 《钢铁》2019,54(10):12-16
 为了给现代高炉渣适宜镁铝比(w(MgO)/w(Al2O3))提供理论依据,定性定量地指导高炉操作,针对高炉渣的适宜镁铝比问题展开研究。首先,分析了高炉渣中MgO的必要性,即在现代化大高炉的冶炼条件下,随着高Al2O3外矿用量的增加,炉渣中含有适宜的MgO是必须的。炉渣合理镁铝比可根据Al2O3质量分数不同进行分段管控:当渣中w(Al2O3)小于14%时,MgO可根据生产要求添加;w(Al2O3)为15%~17%时,适宜的镁铝比(w(MgO)/w(Al2O3))应控制在0.40~0.50,但需注意炉温的影响;当渣中w(Al2O3)大于18%时,适宜的镁铝比应控制在0.45~0.55。在理论分析与试验研究的基础上,进行了工业化应用试验。试验期炉渣镁铝比由0.51降低至0.47,高炉焦比由363.39降低至357.82 kg/t,综合燃料比由495.23降低至试验期的494.18 kg/t,取得了良好的技术经济指标,证明了现代高炉渣镁铝比分段管控技术的正确性和可应用性。  相似文献   

3.
基于适宜镁铝比的三段式精细化控制方针,提出了烧结-球团-高炉等工序中协同优化-功效最大化的MgO添加方式:①采用烧结矿工艺添加细磨含MgO熔剂的粒度的方法,制备低MgO优质烧结矿;②对菱镁石进行活化焙烧处理,制备含MgO优质球团矿;③若烧结矿或球团矿带入高炉内的MgO,不能满足高炉炉渣对MgO的需求,可采用与煤粉共同风口喷吹方法进行补充添加。实践表明,适宜镁铝比操作具有显著的经济效益与社会效益。  相似文献   

4.
研究了烧结矿在不同的MgO含量条件下对烧结性能的影响,并对高炉炉渣镁铝比的降低进行了实践。实现了中大型高炉炉渣镁铝比在0.37~0.46理论最低条件下的高炉长期稳定顺行及指标优化,高炉炉渣镁铝比控制水平在行业内同级别高炉处于领先水平。  相似文献   

5.
通过测定不同MgO/Al2O3的高炉渣粘度,找到炉渣中MgO含量的临界点,确定高炉渣中最佳的镁铝比,为高炉操作提供指导.  相似文献   

6.
通过对6#高炉炉渣镁含量的统计分析得出,炉渣中的氧化镁主要来自烧结矿中的自产精矿,稳定自产精矿配用量就稳定了炉渣中的镁含量。目前的原燃料条件下,渣中适宜的的镁铝比为0.75左右,与此相对应的镁含量在8.5%左右。  相似文献   

7.
刘磊  阎亚坤  胡宾生  雷全成 《甘肃冶金》2007,29(5):12-14,24
以酒钢1#高炉炉渣作为基准,利用化学试剂调整炉渣的碱度以及MgO、BaO、CaF2的含量,对酒钢高炉炉渣的黏度和熔化性温度进行了系统研究。从中可以看出:酒钢1#高炉炉渣是典型的"短渣",将炉渣碱度应从目前的1.15降到1.05,并且控制MgO、BaO含量分别在9%、1.3%左右,CaF2含量在1%~2%之间是比较适宜的。  相似文献   

8.
针对高铝渣特有的黏度高、流动性差、脱硫能力差的特点,济钢3200 m3高炉通过调整热制度和布料制度,在烧结时提高MgO含量,控制渣中镁铝比0.6,使渣中MgO含量在8%~11%,高炉的整体操作炉型适应了高铝渣的冶炼要求。在渣铁比升高43 kg/t的条件下,高炉生铁含硅降低,炉渣脱硫能力增强,基本杜绝了三类铁。  相似文献   

9.
八钢高炉适宜炉渣性能研究   总被引:1,自引:0,他引:1  
  相似文献   

10.
优化梅钢高炉炉渣结构的实验研究   总被引:1,自引:0,他引:1  
重点研究了不同碱度和ωAl2O3水平条件下MgO对炉渣流动性和熔化性温度的影响。结果表明,在梅钢高炉炉渣碱度R2≤1.20,ωAl2O3≤15.5%的条件下,控制MgO在8%~10%的水平即能实现炉渣良好的流动性能。  相似文献   

11.
高炉高铝炉渣性能研究   总被引:2,自引:0,他引:2  
通过高炉现场取样和实验室配制渣样,研究了炉渣中Al2O3、MgO、R(2CaO/SiO2)、R(4(CaO MgO)(/SiO2 Al2O3))等对炉渣性能的综合影响。结果表明,随着高炉终渣Al2O3含量的提高,炉渣的熔化性温度上升、高温粘度增大、热稳定性变差、脱硫能力下降。较高的MgO含量与高的四元碱度R4可降低炉渣高温粘度、降低熔化性温度、拓宽高温低粘度区,提高炉渣脱硫能力。根据原料情况,马钢高炉炉渣Al2O3可达到17%左右,为马钢高配比使用外购高铝矿提供了依据。  相似文献   

12.
通过对南钢高炉生产渣样的现场统计和实验室研究,探讨了南钢高炉渣的熔化性、流动性和脱硫能力。针对南钢高炉渣实际脱硫系数较低,确定南钢高炉渣的适宜组成是(CaO/SiO_2)1.07,(MgO)10%及(Al_2O_3)10%。  相似文献   

13.
长期以来,太钢高炉渣中Al2O3维持在15%左右,MgO含量仅为6%左右,渣型不合理,冶炼低硅、低硫铁困难。近两年,通过提高烧结矿MgO含量,优化高炉炉料结构.渣中MgO由6%上升到8%~10%,使炉渣的熔化性能、流动性和稳定性得到了改善,  相似文献   

14.
介绍了几种高炉炉渣处理工艺方法,并对其进行了对比和评述。  相似文献   

15.
提高鞍钢高炉炉渣中MgO含量的理论研究   总被引:3,自引:0,他引:3  
高MgO含量的炉渣在改善炉渣流动性,稳定炉况和对炉墙无侵蚀等方面,都有良好的作用,就“提高鞍钢高炉炉渣中MgO含量至8% ̄10%”一题在理论上的可行性及途径,效果等问题进行了分析。  相似文献   

16.
武钢高炉炉渣脱硫能力的研究   总被引:1,自引:0,他引:1  
以武钢高炉两种炉料结构条件下的炉渣为对象,通过高温实验及现场数据统计分析,探讨了炉渣碱度及主要组成与炉渣脱硫能力的关系,提出了武钢现有条件下保证生铁质量的最优炉渣结构。  相似文献   

17.
曾小宁  李德明 《炼铁》1995,14(6):43-45
高炉炉渣的脱硫能力是决定生铁质量的重要因素之一。进行高炉炉渣脱硫能力的研究,不仅能使操作者掌握各种炉渣的物理化学特性,改善高炉操作,而且还有利于合理地选择与调整炉料结构,以便获得较好的综合技术经济指标。本研究以武钢5号高炉(新系统)和1~4号高炉(老系统)两种炉料结构条件下的炉渣为对象,根据高温脱硫实验结果及现场数据的统计分析,探讨了炉渣碱度及主要组成与炉渣脱硫能力的关系,其结果对  相似文献   

18.
 为明确高炉炉渣组分对死焦堆中炉渣静态滞留率的影响,采用自行设计的炉渣穿焦试验装置模拟高炉炉渣穿过炉缸死焦堆的过程,探究不同二元碱度(w(CaO)/w(SiO2))、镁铝比(w(MgO)/w(Al2O3))对炉渣滞留率的影响。试验结果表明,随着碱度的增加,炉渣穿过焦炭层的能力增强,滞留率降低;当炉渣镁铝比较低时,炉渣滞留率较高,当镁铝比为0.50~0.55时,滞留率出现最小值,当镁铝比较高时,由于渣焦间润湿性变好,“液桥”间炉渣滞留量增大,滞留率存在上升趋势;渣焦间润湿性较差。炉渣穿过焦炭层的过程主要为物理传输过程,但炉渣仍存在着向焦炭内部渗入的现象,渣焦界面发生反应生成SiC,该反应产物可改善渣焦界面润湿性。  相似文献   

19.
以本钢现场高炉渣成分为基础,结合粘度测定实验和热力学分析计算,研究了不同镁铝比对高炉低铝渣流动性的影响规律,计算了镁铝比对低铝渣系粘流活化能的影响,同时结合红外光谱分析,从微观结构层面阐述了镁铝比对低铝渣热稳定性的影响机理.结果表明,炉渣粘度及熔化性温度均因镁铝比的提升表现出逐渐走低的趋势,而低铝渣的温度稳定性则因炉渣中复杂结构的解聚而愈趋稳定.  相似文献   

20.
 为了掌握高Al2O3条件下(w(Al2O3)为15%以上)高炉渣系的熔化特性,利用差式扫描量热仪分析了不同w(MgO)/w(Al2O3)、碱度(R)以及w(Al2O3)对高铝高炉渣的熔化温度及熔化热的影响。试验结果表明,炉渣熔化开始温度为1 248~1 291 ℃、熔化结束温度为1 432~1 485 ℃、熔化热为137~211 J/g;当w(Al2O3)=15%、高w(MgO)/w(Al2O3)时,发生了共晶逆反应,导致高炉炉渣熔化开始温度逐渐降低,但由于高炉炉渣的液相线温度基本未变,所以炉渣熔化结束温度基本未发生改变;w(Al2O3)为20%时,随着w(MgO)/w(Al2O3)的增加,炉渣中易生成熔点较高的镁铝尖晶石,导致高炉炉渣熔化开始温度逐渐增大,与此同时,炉渣液相线温度逐渐降低,导致炉渣熔化结束温度逐渐降低;随着碱度R的增加,高炉炉渣中生成了具有高熔点的化合物、炉渣的液相线温度升高,使得高炉炉渣的熔化开始温度逐渐增加、炉渣熔化结束温度逐渐升高;随着w(Al2O3)的增加,发生了共晶逆反应,故炉渣的熔化开始温度逐渐降低,而随着w(Al2O3)的增加,炉渣中键能较大的Al—O键增多,需要在更高温度下才能实现炉渣的最终熔化,即熔化结束温度逐渐增加;随着w(MgO)/w(Al2O3)、R以及w(Al2O3)的增加,炉渣熔化热逐渐增多。分析认为,随着R的增加,炉渣中有高熔点化合物的生成,熔化热增加;随着炉渣中w(Al2O3)的增加,炉渣中Al—O键增多,解聚破坏熔渣结构消耗的热量增多;而随着w(MgO)/w(Al2O3)增加,高熔点化合物的生成或熔化开始温度降低,造成熔化热增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号