首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Power savings, image‐quality improvement, and cost reduction are the major issues facing PDP development. High‐Xe‐content PDPs have attained improved luminous efficiency, but with sacrifices in higher switching and sustain voltages and slower discharge build‐up. By examining PDPs having 3.5%–30% Xe content, it was found that utilization of the space‐charge priming effect as well as wall‐charge accumulation are effective in obtaining a low operating voltage and a high switching speed. The improvements are enhanced for higher Xe pressures. By using space‐charge priming, the statistical time lag of the discharge triggering for the 30% Xe content is reduced significantly and becomes approximately equal to that of 3.5% Xe content. Once triggered, the formative time lag of the discharge becomes shorter and the space charge experiences diffusion/drift; hence, accumulation of the wall charge is faster for discharges with higher Xe contents. These indicate that the use of an erase addressing scheme, rather than a write addressing scheme, is preferable when driving high Xe‐content PDPs, because the erase addressing scheme provides the addressing operation with an abundant amount of priming particles. Also, the drive voltages are lower for the erase addressing scheme. In order to reduce the address voltage, it is effective to accumulate wall charges prior to addressing. It was found that there are limiting values for the charge accumulation, above which self‐erase discharges ignite and the wall charge is dissipated. The self‐erase discharge occurs at relatively low wall voltages when the Xe percentages becomes higher. The sustain pulse voltage can be reduced while keeping the luminous efficiency high by increasing the sustain pulse frequency. As the frequency is increased, a residual amount of space charge created by the preceding sustain pulse increases. Due to the priming effect of these space charge, the build‐up of the discharge current becomes faster, resulting in a lower voltage.  相似文献   

2.
Abstract— Conventional AC‐PDPs has a relatively low efficiency which is close to 1.5 lm/W. Only 15–20% of the supplied energy is consumed by the Xe excitation, and 60% of energy is consumed by ion heating. If the ac sustain period is replaced by a rf sustain period, due to the oscillating and low electric field, almost 60% of the supplied energy is spent in Xe excitation while only 20% is used up in ion heating. In this paper, we show a new hybrid‐type PDP; the plasma is formed by ac writing pulses, and then it can be sustained due to rf sustaining pulses. When 40‐MHz frequency pulses were applied to the panel during the rf sustain period, the luminance was 1500–2000 cd/m2 in a Ne‐Xe composition at 200–400 Torr. The luminance efficiency was around 4 lm/W.  相似文献   

3.
Abstract— High‐Xe‐content PDPs attain improved luminous efficiency, but with sacrifices of higher sustain and address voltages and slower discharge build‐up. By examining PDPs with 3.5–100% Xe contents, it was revealed that space‐charge priming as well as wall‐charge accumulation are effective in obtaining low‐voltage and high‐speed operation. In addition, it was found that the effectiveness is emphasized for higher‐Xe‐pressure PDPs. In this respect, erase addressing is more favorable than write addressing, especially for high‐Xe‐pressure PDPs. The formative time lag of the discharge and diffusion/drift of the space charges are shorter for high Xe contents. In this respect, high‐Xe‐content PDPs have a potential for high‐speed addressing, if driven adequately. The use of space‐charge priming, however, is limited by the duration between the priming and scan pulses. Accumulation of wall charges is limited by ignition of a self‐erase discharge with which all the wall charges are dissipated. Although the highest efficiency and luminance are attained with a 100%‐Xe panel, the optimum Xe gas content, considering the sustain pulse voltage and drive voltage margin, would be 70% Xe + Ne.  相似文献   

4.
Abstract— A novel round subpixel and triangle‐arrangement shadow‐mask plasma‐display panel (SMPDP) suitable for high‐resolution displays has been investigated. The discharge efficiency of this high‐resolution SMPDP and the AC coplanar PDP (ACCPDP) has been calculated separately. The variance of the discharge efficiency with pressure and xenon content will be reported. Results indicate that the SMPDP can reach a higher efficiency for high‐resolution displays than conventional ACCPDPs.  相似文献   

5.
Abstract— We have developed highly resolved spatio‐temporal optical emission spectroscopy to investigate the discharge characteristics of coplanar type ac plasma‐display panels (AC‐PDPs). Spatio‐temporal emission profiles were measured for relevant lines of atomic He, Ne, Xe, and ionic Xe in He‐Xe and Ne‐Xe systems with various Xe concentrations and total gas pressures. The surface‐discharge behavior in coplanar PDPs has been clarified.  相似文献   

6.
Abstract— It has been well known that the luminous efficiency of PDPs can be improved by increasing the Xe content in the panel. For instance, the efficiency is improved by a factor 1.7 when the Xe content is increased from 3.5% to 30%. The sustain pulse voltage, however, increases from 180 to 230 V by a factor 1.3. It was found that the increase in the sustain pulse voltage can be suppressed by increasing the sustain pulse frequency. The high‐frequency operation further increases the luminous efficiency. If the Xe content is increased from 3.5% to 30% and the drive pulse frequency is increased from 147 to 313 kHz, the luminous efficiency becomes 2.7 times higher and the luminance 4.5 times higher. Furthermore, the increase in the sustain pulse voltage is suppressed 1.1 times, from 180 to 200 V. A mechanism of attaining high efficiency and low‐voltage performance can be considered as follows. A train of pulses is applied during a sustain period. As the sustain pulse frequency is increased, the pulse repetition rate becomes faster and a percentage of the space charge created by the previous pulse remains until the following pulse is applied. Due to the priming effect of these space charge, the discharge current build‐up becomes faster, the width of the discharge current becomes narrower, ion‐heating loss is reduced, and the effective electron temperature is optimized so that Xe atoms are excited more efficiently. The intensity of Xe 147‐nm radiation, dominant in low‐pressure Xe dis‐charges, saturates with respect to electron density due to plasma saturation. This determines the high end of the sustain pulse frequency.  相似文献   

7.
Abstract— Pioneer Corporation introduced plasma‐display‐panel (PDP) TVs in 2005, which achieved the highest dark‐room contrast ratio of 4000:1 at the time. These PDPs had a novel discharge cell structure consisting of a crystal emissive layer (CEL) on a MgO protective thin film. This cell structure is refered to as a CEL structure. Magnesium‐oxide single‐crystal particles, which have a unique luminance peak around 230–250 nm and a good exo‐electron‐emission property, were found to be an excellent material for CEL and were utilized in CEL panels. In 2007, newly developed PDP TVs in which CEL was formed on a phosphor layer, in addition to the previous CEL structure, were introduced, and this discharge cell structure is refered to as advanced CEL structure. By using the new cell structure, the opposed discharge characteristics have been drastically improved, and a stable reset discharge has been realized with only a weak opposed discharge. As a result, black luminance has been drastically reduced, and a dark‐room contrast ratio of over 20,000:1, the highest ever reported, has been achieved.  相似文献   

8.
Almost two‐thirds of the discharge cells in plasma‐display panels (PDPs) are covered with phosphors. Beyond the efficient conversion of vacuum UV photons into visible light, the phosphor layer serves as a reflective mirror transporting light in the desired viewing direction. The quantum efficiency of state‐of‐the‐art PDP phosphors is, at its upper limit, 80–95%. Today's improved blue‐emitting BaMgAl10O17:Eu (BAM) phosphor still deteriorates during panel processing and operation, resulting in a loss of efficiency and color purity. A reduction in the phosphor particle size below 2 μm is suited to ease panel manufacturing and to improve light output.  相似文献   

9.
Abstract— The degradation mechanisms of the fluorescence characteristics of plasma‐display‐panel (PDP) phosphors during panel fabrication and panel operation are a major drawback in the performance of PDPs. A study of these phenomena for a laser excitation simulation process is presented. These are compared to those obtained in conventional PDPs.  相似文献   

10.
Abstract— In order to lower development costs and to shorten development time, small panels, under 10‐in on the diagonal, are used for the experiments to improve the luminous efficiency of plasma‐display panels. However, it is difficult to show the same results as those of large panels, over 40 in. on the diagonal. In this paper, first, we show that the luminous efficiency and the voltage margin of mini‐panels are not obtained with large panels by using an actual 46‐in. PDP. The reason is that the resistance in the large panels is larger than that in the mini panels and the voltage drop in the large panels are larger than in mini‐panels. Therefore, we conclude that the bus electrode width and the transparent electrode width are important factors in the design of large PDPs. Next, we show the technique of designing large panels by using a database obtained from mini‐panels. The estimated cell‐design results show good agreement with an actual 46‐in. PDP in luminous efficiency and minimum sustain voltage. We show that a desired large PDP can be obtained by using the cell design proposed in the present paper.  相似文献   

11.
Abstract— A MgF2/MgO multiple protecting layer coated on a MgO layer in ac plasma‐display panels (AC‐PDPs) was developed to obtain high brightness and low driving voltages. The material characteristics of this layer were examined by carefully changing the deposition conditions, and the display characteristics of AC‐PDPs using this protecting layer were studied. It was demonstrated that this new method is effective in lowering the firing and sustaining voltages of PDPs and enhancing the brightness of the panel as well.  相似文献   

12.
Abstract— High‐efficiency plasma‐display‐panel micro‐discharge characteristics will be discussed. An increase in the discharge efficiency for a higher‐Xe‐content gas mixture is well known. In this article, the interdependency of the capacitive design, the sustain voltage, and the Xe content will be discussed. A high panel efficacy was obtained, especially for the design and driving conditions that govern the development of a fast discharge. A fast discharge was observed for a higher discharge field at sustain voltages higher than 200 V. A +C‐buffer design, where the extra capacitance acts as a local on the panel power source that lowers the voltage decrease inherent to the discharge of the discharge capacitance upon firing, and efficient priming of the discharge at higher sustain frequency, also stimulates a fast‐discharge development. Apparently, a “high‐efficiency fast‐discharge mode” exists. It is proposed that in this mode the cathode sheath is not, or incompletely, formed during the increase in the discharge current, and the electric field in the discharge cell is dominated not by the space charges but by the externally applied voltage. The effective discharge field is lowered, resulting in a lower effective electron temperature and more efficient Xe excitation. Also, under a fast discharge build‐up condition, the electron‐heating efficiency increases, due to a decrease in the ion heating losses in the cathode sheath. In a 4‐in. color plasma‐display test panel, operating in a high‐efficiency discharge mode and containing a 50%Xe in Ne gas mixture, a panel efficacy of 5 lm/W concurrent with a luminance of 5000 cd/m2 was realized. This result was obtained at a sustain voltage of 260 V. These data compare favorably with alternative high‐efficacy panel design approaches.  相似文献   

13.
A new protecting layer, a LaF3‐coated MgO layer, in color AC‐plasma‐display panels (PDPs) was studied in order to overcome the weakness of the conventional single MgO protecting layer. The material characteristics of the new layer were examined by using variations in the deposition process. The display characteristics were also examined by implementing their processes to actual PDPs. It was demonstrated that this method is effective in lowering the firing and sustaining voltages of PDPs and enhancing the brightness of the panel as well.  相似文献   

14.
Abstract— Observations suggest that the discharge striations in a coplanar AC‐PDP are related to the ion wall‐charge waves generated by the self‐sustained perturbations during the force‐balancing between the ion and the electron wall charge accumulated on the dielectric layer over the electrodes.  相似文献   

15.
Radiation detector proposals that use plasma display panels are rare. In this work, we confirmed a radiation detector that uses plasma display panels that are focused on the breakdown voltage shift in the ramp waveform. We adapted the cell structures, gas contents, and waveforms of plasma display panels (AC‐PDPs) for radiation detectors. Hard X‐rays and gamma rays induce electron emission into the discharge gas, resulting in generating electrons, electron multiplication, and charge accumulation on dielectrics. The radiation dose rate of hard X‐rays and gamma rays (Cs137) is measured as a breakdown voltage shift between anodes and cathodes. For gamma rays, the detection sensitivity in this experiment is not as high as in the case of hard X‐rays, but the detector can locate gamma rays. These results suggest that adapted AC‐PDPs can detect both hard X‐rays and gamma rays and can be used in a large two‐dimensional radiation detector.  相似文献   

16.
Herein, design, development, and analysis of ultra‐low power sensing energy harvesting modules and their subcomponents for ISM band applications have been studied with a holistic approach in an effort to achieve a feasible and high efficient RF energy harvesting performance. The complete harvester system designed and developed here consists of a zero‐bias RF energy rectifying antenna (rectenna), DC boost converters and energy storage super‐capacitors. Compared with the counterpart energy sources, the surrounding or transmitted wireless energy has low intensity which requires designs with high efficiency. To achieve a successful harvester performance, rectifier circuits with high sensitivity Schottky diodes and proper impedance matching circuits are designed. Dedicated RF signals at various levels from nanowatts to miliwatts are applied at the input of the rectenna and the measured input power versus the scavenged DC output voltage are tabulated. Furthermore, by connecting the rectifier to a high gain antenna and using a RF signal transmitter, the wireless RF power harvesting performance at 2.4 GHz was tested up to 5 m. The performance of the rectenna is analyzed for both low‐power detection and efficiencies. Impedance matching network is implemented to reduce the reflected input RF power, DC to DC converters are evaluated for their compatibility to the rectifiers, and super‐capacitor behaviors are investigated for their charging and storage capabilities. The measured results indicate that a wide operating power range with an ultra‐low power sensing and conversion performance have been achieved by optimizing the efficiency of the Schottky rectifier as low as ?50 dBm. The system can be used for battery free applications or expanding battery life for ultra‐low power electronics, such as; RFID, LoRa, Bluetooth, ZigBee, and low power remote sensor systems.  相似文献   

17.
Abstract— Properties of a plasma‐display‐panel (PDP) like discharge were examined by emission and laser Thomson scattering (LTS) measurements. Emission measurements were performed using an intensified CCD camera. By varying several external parameters such as the amplitude of the input voltage, gas composition, and pressure, the influence of these parameters on the discharge behavior was studied. Results of emission measurements showed that they were in good agreement with similar emission measurements on real PDP cells. LTS measurements were performed for the striated PDP‐like discharge at a pressure of 100 Torr and the results showed clear modulations in both profiles of electron density and electron temperature.  相似文献   

18.
The article presents a dual‐band aperture‐coupled rectenna for radio frequency (RF) energy harvesting at 2.45 and 5 GHz application. The rectenna consists of a dual‐band π‐shaped slot‐etched aperture‐coupled antenna, designed at the lower substrate of two FR4 substrate layers and a dual‐band rectifier. The proposed antenna design also introduces the harmonic suppression of third‐ and higher order harmonics, ranging from 6 up to 10 GHz from the asymmetrical stubs design at the transmission feedline. The dual‐band rectifier is designed to operate at 2.45 and 5 GHz frequency, successfully achieving high conversion efficiency at 68.83% and 49.90% with the optimum load resistor of value 700 Ω and 1.1 kΩ. The minimum DC voltage of 0.167 and 0.236 V with 0 dBm RF input power can be increased when greater RF power is being applied to it, increasing its flexibility to cater various low‐power applications.  相似文献   

19.
Abstract— A numerical method was used to investigate the firing characteristics of the discharge cell in an AC shadow‐mask PDP (SM‐PDP). The firing voltages for the various discharge paths in the addressing and sustaining periods were calculated, and the effects of the metal barrier rib and the dielectric layer in the discharge cell on the firing characteristics were studied. Furthermore, the advantages of the SM‐PDP in terms of the firing characteristics will be discussed.  相似文献   

20.
Abstract— A flexible fluorescent lamp that utilizes the same plasma discharge mode as in PDPs has been manufactured. The structure of the flexible lamp is simple and easy to manufacture. All‐plastic materials including plastic substrates, barrier ribs (spacers), and sealants for low‐temperature manufacturing processing have been adopted except for the phosphor and MgO thin film. The MgO thin films were coated on the plastic substrates as a protection layer against the plasma discharge. The adhesion and biaxial texture of MgO thin film deposited on the plastic substrates, poly‐ethyle‐nenaphthalate (PEN) and polycarbonate (PC), at low temperature (100–180°C) has been characterized. The MgO film on PEN shows good adhesion under a repeated bending test. The manufactured flexible lamp consists of two plastic substrates of about 3 in. on the diagonal, barrier rib (spacer), and external ITO electrodes. The Ne‐Xe (5%) gas mixture at 100–200 Torr was used for the discharge gas. A maximum surface luminance of about 100 cd/m2 was achieved for a 1 ‐kHz AC pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号