首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
通过对LF精炼炉热态钢渣循环利用的研究,认为热态钢渣综合利用后,脱硫率差别不大、精炼钢水的质量能够保证、减少了LF炉造渣料消耗、节省了电能和电极消耗。宣钢炼钢厂180 t转炉-LF精炼炉ER70S-6品种钢生产应用,LF精炼炉热态钢渣循环利用后,脱硫率降低2.07%、渣料消耗减少1 350kg、吨钢电耗降低7.53 kW.h,平均每炉回收余钢0.78 t,取得了较好效果。  相似文献   

2.
介绍了武钢CSP钢包铸余渣的热态循环回收利用工艺,该工艺在LF炉对连铸钢包液态铸余渣进行了热态在线循环利用,深入分析了铸余渣循环利用过程中LF炉精炼终渣变化及其对钢水质量的影响。结果表明:通过热态渣的在线循环,LF炉造渣料及脱氧剂消耗大幅降低,其中石灰降低1.01kg/t,精炼渣降低0.21kg/t,脱氧剂铝合金降低0.20kg/t,电耗降低3.66kWh/t,回收了浇铸残余钢水,金属料消耗降低3.0kg/t。  相似文献   

3.
介绍了LF精炼热态渣在转炉炼钢厂的循环应用情况,分析对比精炼渣循环利用前后电极消耗、电量消耗、辅料消耗、脱硫能力、钢水回收量等生产数据后表明,精炼渣循环利用后的钢水回收量比原工艺多了1.175t/炉,电极消耗降低0.08kg/t,电耗降低7.7kW·h/t,石灰降低6.12kg/t,萤石降低1.65kg/t,同时促进了精炼快速成渣,缩短了精炼处理周期,保证了精炼钢水的质量。  相似文献   

4.
孟华栋  杨勇  姚同路 《中国冶金》2022,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

5.
孟华栋  杨勇  姚同路 《中国冶金》2006,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

6.
铸余渣是连铸浇注结束后残余在钢包内的钢水和炉渣,传统的铸余渣冷态回收法存在污染大、效率低、金属损耗大等缺点,铸余渣热态回收利用逐步受到重视。根据不同钢种的铸余渣特性,同时结合铁水中元素与铸余渣反应原理,确定了热态铸余渣返转炉利用的工艺路径:超低碳钢种的热态铸余渣返回时,向铁水包中倒入30~40 t铁水,承接2~3炉铸余渣,直接倒入转炉进行冶炼,吨钢石灰下降4.3 kg,脱磷率提高3.6%;其他钢种的热态铸余渣返回时,向铁水包中倒入60~70 t铁水,承接4~5炉铸余渣后返倒罐进行受铁,吨铁脱硫镁粉下降0.14 kg。该工艺的热态铸余渣返回转炉冶炼比例达到72.5%,有效地利用了铸余渣的冶金功效,钢铁料消耗从1 095 kg/t下降到1 090 kg/t,降低了5 kg/t,取得了显著的经济效益。  相似文献   

7.
首钢精炼82B、40Cr、20CrMnTi、60Si2Mn等钢种采用LF循环利用热态返回渣工艺。LF使用热态还原循环渣精炼特殊钢时,补加合成渣(或活性石灰)200~400kg/炉,适当增加电石消耗量,并用铝粒、电石、硅铁粉对渣脱氧。生产实践表明,采用该工艺使精炼脱硫率达到50%以上,LF后钢水氧活度≤10×10-6,并使LF造渣料-合成渣减少5kg/t,埋弧渣减少2kg/t,冶炼成本降低7元/t。热态精炼渣具有较高的回收利用价值。  相似文献   

8.
介绍了攀钢热态铸余渣在转炉炼钢厂的循环应用情况,分析对比铸余渣循环利用前后辅料消耗、铸余渣回收率等生产数据后表明,回收热态铸余渣有利于降低钢铁料消耗,降低辅料消耗1.11kg/t钢,同时促进了精炼快速成渣,缩短了精炼处理时间,保证了精炼钢水的质量。  相似文献   

9.
为实现“全三脱”工艺少渣冶炼,进一步降低辅料消耗,首钢京唐开发了热态脱硫渣、液态脱碳渣及铸余渣钢直接返回利用工艺。对热态渣、钢的可回收性进行了分析,并通过工业试验验证了工艺的应用效果。结果表明,回收利用5 t的脱硫渣,脱硫剂消耗可降低30%~40%,铁水温降相对减少10~15 ℃,总渣量减少30%~40%,同时可降低铁损,减少对环境的污染;对于脱碳渣,每炉回收热态渣20 t,可节约石灰3.2 t,若铁水硅质量分数小于0.15%,脱磷炉可不加石灰,钢铁料消耗相应减少2.4 kg/t,并且可取消萤石及轻烧的使用,可实现脱磷炉零辅料消耗;对于钢包铸余,通过控制高炉出铁量,将精炼工序RH/LF/CAS产生的热态精炼渣及钢包铸余兑入半钢包,连同半钢一起兑入脱碳炉中进行冶炼,铸余钢回包次数可达到6~8次,实现液态铸余直接回收。  相似文献   

10.
为了实现精炼渣循环利用,分别对精炼渣样成分、精炼渣脱硫能力及精炼渣循环利用过程中对生产工艺的影响等进行了分析。结果表明,精炼渣循环3次以内,不会影响炉渣脱硫及钢包透气性,而且不会造成钢水的回硅、回磷。目前济钢第三炼钢厂精炼渣利用率45%以上,实现浇余回收0.6 t/炉,吨钢可降低石灰消耗3.5 kg、萤石消耗1.2 kg;LF炉处理时吨钢电耗约降低3 kW.h;降低了废渣排放,取得了显著的经济效益和社会效益。  相似文献   

11.
LF炉精炼后的钢渣仍含有一定量的硫,有再利用的价值;钢水浇铸后,减少钢包内的浇余可以提高金属收得率。通过对LF炉热态钢渣渣系及硫容量的分析,以Q345B钢为例,分别计算了钢渣循环利用三次时热态钢渣中硫容量和曼内斯曼指数的变化、热态钢渣循环利用对钢水脱硫和钢水升温等的影响。钢渣循环利用后,每炉钢可节约供电时间4~5 min,减少钢水浇余0.5~0.8 t,提高了金属收得率。  相似文献   

12.
 为了实现LF热态钢渣的循环利用,对目前武钢LF热态钢渣两次循环利用工艺中精炼渣的组成、脱硫能力及吸收夹杂能力的变化进行了分析研究。结果表明,LF热态钢渣循环利用后钢水的脱硫率可以达到90%以上,精炼终点w([S])可以达到0.001%的水平;相对于未循环工艺,钢中w(T[O])减少17.50×10-6,w([N])减少17.00×10-6,夹杂物数量减少4.47个/mm2。根据两次热循环利用结果得出:通过控制回收的渣量及补加石灰的量,可保证循环后初始炉渣中的w((S))小于0.20%,终渣碱度(w(CaO)/w(SiO2))在12.00~20.00范围,w(CaO)/w(Al2O3)为1.75~2.00,从而使精炼渣的脱硫效率、w((S))/w([S])不受循环次数的限制。  相似文献   

13.
郭猛  王晓峰  张越  赵志刚 《鞍钢技术》2014,(1):50-52,62
针对鞍钢股份有限公司炼钢总厂LF工序造渣速度较慢的问题,探讨了LF炉提前造渣技术,即把LF所需渣料大部分前移到转炉出钢工序进行,利用出钢过程的钢水流冲击、底吹氩气搅拌等良好的动力学条件,在钢水罐内提前造高碱度、具备一定脱硫能力的顶渣。采用该技术后,LF处理时间缩短了2-3min,LF升温效率提高了2.1℃/min,连铸坯洁净度有所改善。  相似文献   

14.
为掌握石灰石造渣和石灰造渣炼钢在工艺能耗方面的不同,在300 t转炉开展石灰石造渣炼钢试验,并从煤气、蒸汽回收及钢渣产生角度进行能耗对比。结果表明,石灰石造渣与石灰造渣炼钢相比,在废钢加入量减少71.6 kg/t的前提下,煤气(CO)回收量提高21.5 m3/t,蒸汽回收量提高28.0 kg/t,钢渣量减少31.4 kg/t。从石灰类熔剂能耗、煤气和蒸汽回收产生的能量及钢渣产生能耗角度对比,两者的能耗平均分别为-38.9、-23.9 kg/t,前者较后者最大节能降耗23.3 kg/t,最小节能降耗9.5 kg/t,平均节能降耗15.0 kg/t。  相似文献   

15.
针对100t转炉用含钛铁水冶炼高碳钢的前期成渣难于熔化、脱磷率低的问题,分析了含钛铁水转炉炼钢的成渣过程和炉渣的物理特性,开发了留渣+单渣工艺技术。循环利用终点炉渣,充分发挥渣中10%~13%FeO高(FeO)含量的特点,快速把含钛铁水冶炼前期的CaO-TiO2-SiO2三元渣系转变为CaO-TiO2-SiO2-FeO四元渣系,脱除钢中大部分磷。控制终渣碱度大于3.2、(TiO2)含量小于5%,使转炉出钢[C]≥0.20%、[P]≤0.014%,转炉炼钢脱磷率达到88%~92%,石灰消耗下降到28 kg/t钢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号