首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the performance of the upflow anaerobic sludge blanket (UASB) reactor as the pretreatment system for silk-dyeing wastewater. Two laboratory-scale UASB reactors, with working volume of 15.59 I, were used during May 1998 to June 1999. The actual wastewater was diluted to reduce ammonium ion toxicity on anaerobic bacteria. The experiments were conducted at the organic loading rates (OLRs) of 0.52, 1.01, 1.04, 1.54 and 2.56 kgCOD/(m3 x d), treating only wastewater generated from the acid-dye process of mixed-species raw silk. It took approximately 4 1/2 months to reach the steady-state conditions. It was found that the COD removal was in the ranges of 74.1-85.3%, except at OLR 2.56 kgCOD/(m3 x d) where efficiency significantly dropped to 55.2%. The apparent color removal was in the similar trend as COD. During the study periods, wastewater input had various color shades while the effluent generally looked pale yellowish. The methane generation rates ranged from 0.18-0.31 m3/kg COD removed, with methane composition 81.0-88.1% in biogas. The average granule size in the sludge bed had slowly increased to 0.73 mm in the last experiment. It can be concluded that the UASB reactor is suitable as a pretreatment system for silk-dyeing wastewater. An OLR of 1 kgCOD/(m3 x d) and an influent concentration diluted to 2,600 mgCOD/l are suggested while COD and apparent color removal efficiency of 80% and 70%, respectively, can be expected.  相似文献   

2.
An Imhoff tank was reconstructed into a 250 m3 UASB reactor in order to treat a malting plant wastewater. The UASB was inoculated with sludge from an anaerobic lagoon used for slaughterhouse wastewater treatment. After two months of operation the reactor achieved full load with an HRT of 17 h, a COD removal higher than 80% and a biogas production of 300 m3/day (77% average methane content), with an organic loading rate of 3.6 kgCOD/m3.d (0.24 kgCOD/kgVSS.d). A yield coefficient of 0.09 gVSS/gCODrem was found from a mass balance. The fat present in the inoculated sludge (48 mg/gSSV) did not affect the start up performance. Sludge from the inoculum with high content of fat (270 mg/gSSV), was separated by flotation in the first week of operation. The COD removal efficiency was scarcely influenced by the reactor operation temperature (17-25 degrees C).  相似文献   

3.
A pilot-scale multi-staged UASB (MS-UASB) reactor with a working volume of 2.5 m3 was operated for thermophilic (55 degrees C) treatment of an alcohol distillery wastewater for a period of over 600 days. The reactor steadily achieved a super-high rate COD removal, that is, 60 kgCOD m(-3) d(-1) with over 80% COD removal. However, when higher organic loading rates were further imposed upon the reactor, that is, above 90 kgCOD m(-3) d(-1) for barely-based alcohol distillery wastewater (ADWW) and above 100 kgCOD m(-3) d(-1) for sweet potato-based ADWW, the reactor performance somewhat deteriorated to 60 and 70% COD removal, respectively. Methanogenic activity (MA) of the retained sludge in the thermophilic MS-UASB reactor was assessed along the time course of continuous run by serum-vial test using different substrates as a vial sole substrate. With the elapsed time of continuous run, hydrogen-utilizing MA, acetate-utilizing MA and propionate-fed MA increased at maximum of 13.2, 1.95 and 0.263 kgCOD kgVSS(-1) d(-1), respectively, indicating that propionate-fed MA attained only 1/50 of hydrogen-utilizing MA and 1/7 of acetate-utilizing MA. Since the ADWW applied herewith is a typical seasonal campaign wastewater, the influence of shut-down upon the decline in sludge MA was also investigated. Hydrogen-utilizing MA and acetate-utilizing MA decreased slightly by 3/4, during a month of non-feeding period, whereas propionate-fed MA were decreased significantly by 1/5. Relatively low values of propionate-fed MA and its vulnerability to adverse conditions suggests that the propionate degradation step is the most critical bottleneck of overall anaerobic degradation of organic matters under thermophilic condition.  相似文献   

4.
In this study, specific methanogenic activity (SMA) test and fluorescence in situ hybridisation (FISH) were respectively used to determine acetoclastic methanogenic capacity, and composition and number of methanogenic and sulphate reducing bacterial (SRB) populations within a full scale anaerobic contact reactor treating a pulp and paper industry effluent. The sludge samples were collected from three different heights along the anaerobic reactor having a difficulty of completely stirring. Performance of the anaerobic reactor in terms of COD removal efficiency varied between 47 and 55% at organic loading rates in a range of 1.6-1.8 kg COD m(-3) d(-1) and methane yield varied between 0.18 and 0.20 m3CH4kg CODrem(-1). The anaerobic reactor was not operated for 2 weeks during the monitoring period. According to SMA test results, potential methane production rate was 276 mLCH4 gVSS(-1) d(-1) before the off period of the reactor, however it decreased to 159 mL CH4 gVSS(-1) d(-1) after this period. SMA test and FISH results along the reactor height showed that the acetoclastic methanogenic activity of the sludge samples, the relative abundance of acetoclastic methanogens, hydrogenotrophic methanogens and acetate oxidising SRB decreased as the reactor height increased, however the relative abundance of non-acetate oxidising SRB increased.  相似文献   

5.
Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes.  相似文献   

6.
The use of solid mining residues (Cola) which contain a certain amount of Ni, Fe and Co, to stimulate anaerobic processes was evaluated. The effect over methane production and chemical oxygen demand (COD) removal efficiency was analysed. The studies were carried out in discontinuous reactors at lab scale under mesophilic conditions until exhausted. 0, 3, 5 and 7 mg Cola l(-1) doses were applied to synthetic wastewater. Volatile fatty acids (VFA) and sucrose were used as substrate, sulphur and nitrogen concentration, being the noise variable. Cola addition at dose around 5 mg I(-1), turned out to be stimulating for the anaerobic process. It was the factor that most influenced on methane production rate together with VFA and high content of volatile suspended solids. In the case of methane yield, pH was the control factor of strongest influence. Higher values of COD removal efficiency were obtained when the reactors were operated with sucrose at relatively low pH and at the smallest concentration of nitrogen and sulphur. Solid residues dose and the type of substrate were the factors that had most influence on COD removal efficiency.  相似文献   

7.
Winery and distillery wastewater treatment by anaerobic digestion.   总被引:1,自引:0,他引:1  
Anaerobic digestion is widely used for wastewater treatment, especially in the food industries. Generally after the anaerobic treatment there is an aerobic post-treatment in order to return the treated water to nature. Several technologies are applied for winery wastewater treatment. They are using free cells or flocs (anaerobic contact digesters, anaerobic sequencing batch reactors and anaerobic lagoons), anaerobic granules (Upflow Anaerobic Sludge Blanket--UASB), or biofilms on fixed support (anaerobic filter) or on mobile support as with the fluidised bed. Some technologies include two strategies, e.g. a sludge bed with anaerobic filter as in the hybrid digester. With winery wastewaters (as for vinasses from distilleries) the removal yield for anaerobic digestion is very high, up to 90-95% COD removal. The organic loads are between 5 and 15 kgCOD/m3 of digester/day. The biogas production is between 400 and 600 L per kg COD removed with 60 to 70% methane content. For anaerobic and aerobic post-treatment of vinasses in the Cognac region, REVICO company has 99.7% COD removal and the cost is 0.52 Euro/m3 of vinasses.  相似文献   

8.
Upflow anaerobic sludge blanket (UASB) methane fermentation treatment of cow manure that was subjected to screw pressing, thermal treatment and subsequent solid-liquid separation was studied. Conducting batch scale tests at temperatures between 140 and 180 degrees C, the optimal temperature for sludge settling and the color suppression was found to be between 160-170 degrees C. UASB treatment was carried out with a supernatant obtained from the thermal treatment at the optimal conditions (170 degrees C for 30 minutes) and polymer-dosed solid-liquid separation. In the UASB treatment with a COD(Cr) loading of 11.7 kg/m3/d and water temperature of 32.2 degrees C, the COD(Cr) level dropped from 16,360 mg/L in raw water to 3,940 mg/L in treated water (COD(Cr), removal rate of 75.9%), and the methane production rate per COD(Cr) was 0.187 Nm3/kg. Using wastewater thermal-treated at the optimal conditions, also a methane fermentation treatment with a continuously stirred tank reactor (CSTR) was conducted (COD(Cr) in raw water: 38,000 mg/L, hydraulic retention time (HRT): 20 days, 35 degrees C). At the COD(Cr) loading of 1.9 kg/m3/d, the methane production rate per COD(Cr), was 0.153 Nm3/kg. This result shows that UASB treatment using thermal pre-treatment provides a COD(Cr), loading of four times or more and a methane production rate of 1.3 times higher than the CSTR treatment.  相似文献   

9.
The combined ADEPT (Anaerobic Digestion Elutriated Phased Treatment)- SHARON (Single reactor system High Ammonium Removal Over Nitrite)--ANAMMOX (Anaerobic Ammonium Oxidation) processes were operated for the purpose of resource recovery and nitrogen removal from slurry-type piggery waste. The ADEPT operated at acidogenic loading rates of 3.95 gSCOD/L-day, the SCOD elutriation rate and acid production rate were 5.3 gSCOD/L-day and 3.3 gVFAs(as COD)/L-day, respectively. VS reduction and SCOD reduction by hydrolysis were 13% and 0.19 gSCOD(prod.)/gVS(feeding), respectively. Also, the acid production rate was 0.80 gVFAs/gSCOD(production). In the methanogenic reactor, the gas production rate and methane content were 2.8 L/day (0.3 m3CH4/kgCOD(removal)STP) and 77%, respectively. With these operating condition, the removal of nitrogen and phosphorus were 94.1% as NH4-N (86.5% as TKN) and 87.3% as T-P, respectively.  相似文献   

10.
This paper describes the performance, sludge production and biofilm characteristics of a full scale fluidized bed anaerobic reactor (32 m3) for domestic wastewater treatment. The reactor was operated with 10.5 m x h(-1) upflow velocity, 3.2 h hydraulic retention time, and recirculation ratio of 0.85 and it presented removal efficiencies of 71+/-8% of COD and 77+/-14% of TSS. During the apparent steady-state period, specific sludge production and sludge age in the reactor were (0.116+/-0.033) kgVSS. kgCOD(-1) and (12+/-5)d, respectively. Biofilm formed in the reactor presented two different patterns: one of them at the beginning of the colonization and the other of mature biofilm. These different colonization patterns are due to bed stratification in the reactor, caused by the difference in local-energy dissipation rates along the reactor's height, and density, shape, etc. of the bioparticles. The biofilm population is formed mainly of syntrophic consortia among sulfate reducing bacteria, methanogenic archaea such as Methanobacterium and Methanosaeta-like cells.  相似文献   

11.
Co-digestion of waste activated sludge (WAS) with agro-industrial organic wastewaters is a technology that is increasingly being applied in order to produce increased gas yield from the biomass. In this study, the effect of olive mill wastewater (OMW) on the performance of a cascade of two anaerobic continuous stirred tank (CSTR) reactors treating thickened WAS at mesophilic conditions was investigated. The objectives of this work were (a) to evaluate the use of OMW as a co-substrate to improve biogas production, (b) to determine the optimum hydraulic retention time that provides an optimised biodegradation rate or methane production, and (c) to study the system stability after OMW addition in sewage sludge. The biogas production rate at steady state conditions reached 0.73, 0.63, 0.56 and 0.46 l(biogas)/l(reactor)/d for hydraulic retention times (HRTs) of 12.3, 14, 16.4 and 19.7 d. The average removal of soluble chemical oxygen demand (sCOD) ranged between 64 and 72% for organic loading rates between 0.49 and 0.75 g sCOD/l/d. Reduction in the volatile suspended solids ranged between 27 and 30%. In terms of biogas selectivity, values of 0.6 l(biogas)/g tCOD removed and 1.1 l(biogas)/g TVS removed were measured.  相似文献   

12.
The paper reports the results of an investigation carried out at lab scale to assess the effectiveness of an innovative technology (SUPERBIO) for treating municipal and/or industrial wastewater. When this technology was applied for treating municipal wastewater, the results showed that even at maximum organic load (i.e. 7 kg COD m(-3) d(-1)), the COD in the treated effluent was lower than 50 mg L(-1). In addition, both ammonia and TKN removal efficiencies resulted in higher than 87% up to an organic load of 5.7 kg COD m(-3) d(-1) corresponding to a nitrogen load of 0.8 kg TKN m(-3) d(-1). Very satisfactory process performances also resulted during tannery wastewater treatment, when a chemical oxidation step (i.e. ozonation) was inserted in the treatment cycle of SUPERBIO. In such an instance, at organic and nitrogen loadings of 3 kgCOD m(-3) d(-1) and 0.20 kg N m(-3) d(-1), COD, NH4+ -N and TSS average removals were 96, 99 and 98%, respectively. Finally, during the whole experimentation, SUPERBIO was always characterised by a very low sludge production. Such a result was ascribed mainly to the characteristics of biomass that grew in the form of very dense granules (i.e. 130 gVSS L(Biomass)(-1) allowing a biomass concentration as high as 50-60 gTSS l(bed)(-1) to be achieved.  相似文献   

13.
A full scale UASB reactor treating the effluent of a malting plant was operated during nearly two years. During 37 weeks of operation the reactor worked with a COD removal efficiency of 80% and a biogas production of nearly 300 m(3)/d with a methane content of 77%. After the start up and during these months of operation the volumetric organic load was 4 kgCOD/m(3).d and the specific organic load was between 0.2-0.4 kgCOD/kgVSS.d. The sludge SMA in this period was around 0.25 kgCOD/kg VSS.d. On week 37 as a result of a problem at the industrial process the pH in the reactor dropped to a value of 4.8. After pH recovering, the reactor worked with fluctuating COD values in the exit and showed a downward trend in the COD removal efficiency. On week 81 the presence of filaments in the granules was detected. High proportion of Chloroflexi filaments were detected by FISH in the sludge. Changes in the microbial population caused by the low pH probably destabilize the reactor performance. The presence of filamentous granules in the sludge and its further growing could be encouraged by the pH drop and the low specific organic load applied to the reactor. The low specific organic load was a consequence of the high VSS content in the UASB reactor, due to the lack of purges. The length of the filaments attached to the granules grew throughout time. In order to eliminate the sludge with poor settlement properties a recycle was applied to the reactor. As a consequence, low amount of granular sludge stayed in the reactor. At the end, COD concentration in the influent reached higher values than in normal operation; at the same time a complete sludge wash out occurred. On the other hand, using the same sludge (after the recycle implementation) in a bench scale reactor the good properties of the sludge were completely recovered.  相似文献   

14.
The main objective of this research was to demonstrate that selected natural lava stones can be successfully used for low-cost aerobic biofiltration of municipal wastewater. To demonstrate the procedure a pilot filter was built using 6 mm lava stones as support material. The filter depth was 3.0 m. Provided with sampling ports at different depths analysis of the wastewater could be made for COD, TSS, ammonia and nitrates nitrogen, pH, temperature and Kjeldahl nitrogen. Backwashing was performed every 72 hours. Total and dissolved COD and TSS behaved similarly with the organic load: The highest removal rates were observed with the lowest organic load of 0.8 kgCOD/m3 d. These removal rates decreased to a minimum value at organic loading rates of 1.5 kgCOD/m3 d and then remained without noticeable changes to the highest value of 3.5 kgCOD/m3 d. The highest total and dissolved COD removal values were 81 and 84%, respectively. For TSS the best removal value was 95%. Up to 75% ammonia removal was achieved at the lowest organic load of 0.8 kgCOD/m3 d. Ammonia removal decreased to 36% with a higher organic load of 1.6 kgCOD/m3 d. The Mean Cellular Retention (MCRT) time varied from 1 to 6 days with an average of 3.2 days. This fact proves that the MCRT depends on the backwashing frequency more than of any other factor involved. The bed volume decreased in about 5% after 300 days of operation. Microscopic observations showed that the small stones were rounder after 300 days and that the volume losses were caused when the edges of the stones were cut by the abrasion caused by backwashing.  相似文献   

15.
The studied organic chemical wastewater had a high COD, 20-45g/L, and low TSS, less than 200 mg/L, making anaerobic bio-filtration a suitable treatment method. The organic matter consisted of alcohols, amines, ketones and aromatic compounds, such as toluene and phenol. Granulated activated carbon (GAC) and a porous stone called tezontle, widely available in Mexico, were used as a bio-film support. Once inoculated, the mesophilic reactors with granulated activated carbon (GAC-BFs) reached stability with 80% COD removal in 40 days, while the reactors with tezontle material (tezontle-BF) required 145 days. Biodegradation of more than 95% was obtained with both support media: at organic loads less than 1.7 kg m(-3) d (-1) in tezontle-BF and with loads of up to 13.3 kg m(-3) d(-1) in GAC-BFs. The bio-filters with GAC allowed COD removal efficiency of 80% at a load as high as 26.3 kg m (-3) d(-1), while the same efficiency with tezontle was obtained at loads up to 4.45 kgm (-3d) (-1). The use of GAC as support material allows greater biodegradation rates than tezontle and it makes the bio-filters more resistant to organic increases, inhibition effects and toxicity. Methanogenic activity was inhibited at loads higher than 1.7 kg m(-3) d(-1) in bio-filters with tezontle and 22.8 kg m(-3) d(-1 ) in bio-filters with GAC. At loads lower than the previously mentioned, high methane production yield was obtained, 0.32-0.35 m(3) CH4/kg COD removed. The biomass growth rates were low in the bio-filters with both kinds of material; however, a sufficiently high biomass holdup was obtained.  相似文献   

16.
Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.  相似文献   

17.
Anaerobic processes are widely used for treatment of both municipal and industrial wastewater as well as agricultural substrates. In contrast to the aerobic methods, they are frequently more cost-efficient, they have a lower surplus sludge production, and the reactors can be run with higher volumetric loads and thus smaller volumes. In the paper presented both experimental data and the application of the Anaerobic Digestion Model No. 1 for agricultural substrate from livestock farming will be described. A 3,500 L reactor with mesophilic operation and loaded with cattle manure was examined with respect to its COD degradation, gas production, and gas composition. Results revealed a reduction of 30-35% COD and a biogas production of 287 L(Biogas)/kg(VS) when operated with a specific loading rate of 3.6 kg(VS)/(m(3).d).After calibration of the ADM 1, which was based predominantly on the acetate uptake rate (k(ac.m)=3.6 g/(g.d)), the disintegration constant (k(Dis)=0.05 d(-1)) and the exact determination of the influent COD fractions contained in the agricultural substrate, it was possible to simulate the measured data of the plant in excellent quality. For future application of the ADM 1 as part of control strategies a sensitivity analysis was carried out. The analysis based on the SVM slope technique has been done to identify highly sensitive biochemical parameters. These are, amongst others, the acetate uptake rate, the disintegration constant, the biomass decay rates and the half saturation constant for ammonia inhibition. Sensitivity analysis of the inflow COD fractions (proteins, carbohydrates, lipids and inert) showed the necessity of detailed measurements for the prediction of the gas flow and composition as well as for prognosis of inhibitions in the anaerobic process. For cattle manure especially the fractions of inert material and carbohydrates should be observed carefully. Due to the high content of NH(4)-N in manure the protein fraction is not as sensitive as the two mentioned above.  相似文献   

18.
Biological degradation in packed bed anaerobic mesophilic reactors with five different support materials was studied for the treatment of chemical-pharmaceutical wastewater with high COD (23-31 g/L), which contains toxic organic compounds. Experimental up-flow bio-filters were operated at different organic loads for a two-year period. Removals of 80-98% were obtained in the reactors with sand, anthracite and black tezontle, but at relatively low organic loads, less than 3.6 kg m(-3)d(-1). The reactor with granular activated carbon (GAC) had a better performance; efficiencies higher than 95% were obtained at loads up to 17 kg m(-3)d(-1) and higher than 80% with loads up to 26 kg m(-3)d(-1). Second in performance was the reactor with red tezontle which allows COD removals higher than 80% with loads up to 6 kg m(-3)d(-1). The use of GAC as support material allows greater biodegradation rates than the rest of the materials and it makes the process more resistant to organic load increases, inhibition effects and toxicity. Methanogenic activity was inhibited at loads higher than 21.9 kg m(-3)d(-1) in the GAC-reactor and at loads higher than 3.6 kg m(-3)d(-1) in the rest of the reactors. At loads lower than the previously mentioned, high methane production yield was obtained, 0.32-0.35 m3CH4/kg CODremoved.  相似文献   

19.
The effect of low operating temperature and pollutant concentration on the performance of five anaerobic hybrid reactors was investigated. Stable and efficient long-term (>400 days) treatment of a cold (6-13 degrees C), volatile fatty acid (VFA)-based, wastewater was achieved at applied organic loading rates (OLRs) of 5 kg chemical oxygen demand (COD) m(-3) d(-1) with COD removal efficiencies c. 84% at 6 degrees C (sludge loading rate (SLR) 1.04-1.46 kg COD kg [VSS](-1) d(-1)). VFA-based wastewaters, containing up to 14 g pentachlorophenol (PCP) m(-3) d(-1) or 155 g toluene m(-3) d(-1) were successfully treated at applied OLRs of 5-7 kg COD m(-3) d(-1). Despite transient declines in reactor performance in response to increasing toxicant loading rates, stable operation (COD removal efficiencies > 90%) and satisfactory toxicant removal efficiencies (>88%) were demonstrated by the systems.  相似文献   

20.
The effect of alkaline pretreatment of waste-activated sludge, using two models to study the sequential hydrolysis rates of suspended (Sanders' surface model) and dissolved (Goel's saturation model) solids, on the mesophilic and thermophilic anaerobic digestion rate is evaluated. The pretreatment, which reduces the size of the solids, increases the reaction rate by increasing the surface area and the specific surface hydrolysis constant (K(SBK)); at thermophilic conditions from 0.45 x 10(-3) kg m(-2) d(-1) for the fresh sludge to 0.74 x 10(-3) kg m(-2) d(-1) for the pretreated sludge and at mesophilic conditions these values are 0.28 x 10(-3) kg m(-2) d(-1) and 0.47 x 10(-3) kg m(-2) d(-1) confirming the usefulness of a pretreatment for solids reduction. But for soluble solids, the thermoalkaline pretreatment decreases the reaction rates by inducing a competitive inhibition on the thermophilic anaerobic digestion rate while in the mesophilic range, a non-competitive inhibition is observed. A mathematical simulation of the consecutive reactions, suspended solids to dissolved solids and to methane in staged anaerobic thermophilic-mesophilic digestion, shows that with 4% suspended solids concentration it is better not to use a thermoalkaline pretreatment because overall solids reduction and total methane production are not as good as without pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号