首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To identify the primary component responsible in electrolyzed oxidizing (EO) water for inactivation, this study determined the concentrations of hypochlorous acid (HOCl) and hypochlorite ions (OCl-) and related those concentrations to the microbicidal activity of the water. The ultraviolet absorption spectra were used to determine the concentrations of HOCl and OCl- in EO water and the chemical equilibrium of these species with change in pH and amperage. EO water generated at higher amperage contained a higher chlorine concentration. The maximum concentration of HOCl was observed around pH 4 where the maximum log reduction (2.3 log10 CFU/ml) of Bacillus cereus F4431/73 vegetative cells also occurred. The high correlation (r = 0.95) between HOCl concentrations and bactericidal effectiveness of EO water supports HOCl's role as the primary inactivation agent. Caution should be taken with standard titrimetric methods for measurement of chlorine as they cannot differentiate the levels of HOCl present in EO water of varying pHs.  相似文献   

2.
Electrolyzed oxidizing (EO) water has proved to be effective against foodborne pathogens attached to cutting boards and poultry surfaces and against spoilage organisms on vegetables; however, its levels of effectiveness against Listeria monocytogenes and Salmonella Typhimurium in cell suspensions have not been compared with those of other treatments. In this study, the oxidation reduction potentials (ORPs), chlorine concentrations, and pHs of acidic and basic EO water were monitored for 3 days at 4 and 25 degrees C after generation. There were no differences between the pHs or ORPs of acidic and basic EO waters stored at 4 or 25 degrees C. However, the free chlorine concentration in acidic EO water stored at 4 degrees C increased after 24 h. In contrast, the free chlorine concentration in acidic EO water stored at 25 degrees C decreased after one day. Cell suspensions of Salmonella Typhimurium and L. monocytogenes were treated with distilled water, chlorinated water (20 ppm), acidified chlorinated water (20 ppm, 4.5 pH), acidic EO water (EOA), basic EO water (EOB), or acidic EO water that was "aged" at 4 degrees C for 24 h (AEOA) for up to 15 min at either 4 or 25 degrees C. The largest reductions observed were those following treatments carried out at 25 degrees C. EOA and AEOA treatments at both temperatures significantly reduced Salmonella Typhimurium populations by > 8 log10 CFU/ml. EOA and AEOA treatments effectively reduced L. monocytogenes populations by > 8 log10 CFU/ml at 25degrees C. These results demonstrate the stability of EO water under different conditions and that EO water effectively reduced Salmonella Typhimurium and L. monocytogenes populations in cell suspensions.  相似文献   

3.
Recent foodborne outbreaks implicating spinach and lettuce have increased consumer concerns regarding the safety of fresh produce. While the most common commercial antimicrobial intervention for fresh produce is wash water containing 50 to 200 ppm chlorine, this study compares the effectiveness of acidified sodium chlorite, chlorine, and acidic electrolyzed water for inactivating Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes inoculated onto leafy greens. Fresh mixed greens were left uninoculated or inoculated with approximately 6 log CFU/g of E. coli O157:H7, Salmonella, and L. monocytogenes and treated by immersion for 60 or 90 s in different wash solutions (1:150, wt/vol), including 50 ppm of chlorine solution acidified to pH 6.5, acidic electrolyzed water (pH 2.1 +/- 0.2, oxygen reduction potential of 1,100 mV, 30 to 35 ppm of free chlorine), and acidified sodium chlorite (1,200 ppm, pH 2.5). Samples were neutralized and homogenized. Bacterial survival was determined by standard spread plating on selective media. Each test case (organism x treatment x time) was replicated twice with five samples per replicate. There was no difference (P > or = 0.05) in the time of immersion on the antimicrobial effectiveness of the treatments. Furthermore, there was no difference (P > or = 0.05) in survival of the three organisms regardless of treatment or time. Acidified sodium chlorite, resulted in reductions in populations of 3 to 3.8 log CFU/g and was more effective than chlorinated water (2.1 to 2.8 log CFU/g reduction). These results provide the produce industry with important information to assist in selection of effective antimicrobial strategies.  相似文献   

4.
Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine‐containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in “aged” samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl?) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (<1.0 log CFU/mL reduction) in aged samples with a low pH and high Cl?. Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy.  相似文献   

5.
Alfalfa sprouts have been implicated in several salmonellosis outbreaks in recent years. The disinfectant effects of acidic electrolyzed oxidizing (EO) water against Salmonella enterica both in an aqueous system and on artificially contaminated alfalfa seeds were determined. The optimum ratio of seeds to EO water was determined in order to maximize the antimicrobial effect of EO water. Seeds were combined with EO water at ratios (wt/vol) of 1:4, 1:10, 1:20, 1:40, and 1:100, and the characteristics of EO water (pH, oxidation reduction potential [ORP], and free chlorine concentration) were determined. When the ratio of seeds to EO water was increased from 1:4 to 1:100, the pH decreased from 3.82 to 2.63, while the ORP increased from +455 to +1,073 mV. EO water (with a pH of 2.54 to 2.38 and an ORP of +1,083 to +1,092 mV) exhibited strong potential for the inactivation of S. enterica in an aqueous system (producing a reduction of at least 6.6 log CFU/ml). Treatment of artificially contaminated alfalfa seeds with EO water at a seed-to-EO water ratio of 1:100 for 15 and 60 min significantly reduced Salmonella populations by 2.04 and 1.96 log CFU/g, respectively (P < 0.05), while a Butterfield's buffer wash decreased Salmonella populations by 0.18 and 0.23 log CFU/g, respectively. After treatment, EO water was Salmonella negative by enrichment with or without neutralization. Germination of seeds was not significantly affected (P > 0.05) by treatment for up to 60 min in electrolyzed water. The uptake of liquid into the seeds was influenced by the internal gas composition (air, N2, or O2) of seeds before the liquid was added.  相似文献   

6.
Electrolyzed oxidizing water is a relatively new concept that has been utilized in agriculture, livestock management, medical sterilization, and food sanitation. Electrolyzed oxidizing (EO) water generated by passing sodium chloride solution through an EO water generator was used to treat alfalfa seeds and sprouts inoculated with a five-strain cocktail of nalidixic acid resistant Escherichia coli O157:H7. EO water had a pH of 2.6, an oxidation-reduction potential of 1150 mV and about 50 ppm free chlorine. The percentage reduction in bacterial load was determined for reaction times of 2, 4, 8, 16, 32, and 64 min. Mechanical agitation was done while treating the seeds at different time intervals to increase the effectiveness of the treatment. Since E. coli O157:H7 was released due to soaking during treatment, the initial counts on seeds and sprouts were determined by soaking the contaminated seeds/sprouts in 0.1% peptone water for a period equivalent to treatment time. The samples were then pummeled in 0.1% peptone water and spread plated on tryptic soy agar with 5 microg/ml of nalidixic acid (TSAN). Results showed that there were reductions between 38.2% and 97.1% (0.22-1.56 log(10) CFU/g) in the bacterial load of treated seeds. The reductions for sprouts were between 91.1% and 99.8% (1.05-2.72 log(10) CFU/g). An increase in treatment time increased the percentage reduction of E. coli O157:H7. However, germination of the treated seeds reduced from 92% to 49% as amperage to make EO water and soaking time increased. EO water did not cause any visible damage to the sprouts.  相似文献   

7.
The effectiveness of electrolyzed (EO) water for killing Campylobacter jejuni on poultry was evaluated. Complete inactivation of C. jejuni in pure culture occurred within 10 s after exposure to EO or chlorinated water, both of which contained 50 mg/l of residual chlorine. A strong bactericidal activity was also observed on the diluted EO water (containing 25 mg/l of residual chlorine) and the mean population of C. jejuni was reduced to less than 10 CFU/ml (detected only by enrichment for 48 h) after 10-s treatment. The diluted chlorine water (25 mg/l residual chlorine) was less effective than the diluted EO water for inactivation of C. jejuni. EO water was further evaluated for its effectiveness in reducing C. jejuni on chicken during washing. EO water treatment was equally effective as chlorinated water and both achieved reduction of C. jejuni by about 3 log10 CFU/g on chicken, whereas deionized water (control) treatment resulted in only 1 log10 CFU/g reduction. No viable cells of C. jejuni were recovered in EO and chlorinated water after washing treatment, whereas high populations of C. jejuni (4 log10 CFU/ml) were recovered in the wash solution after the control treatment. Our study demonstrated that EO water was very effective not only in reducing the populations of C. jejuni on chicken, but also could prevent cross-contamination of processing environments.  相似文献   

8.
Washing conditions that included a soak or brush scrub were evaluated for removal of Salmonella from the surface of smooth (honeydew) or complex (cantaloupe) melon rinds. Melon rinds were spot-inoculated onto a 2.5 cm2 area of rind (squares) with approximately 6.0 log(10) CFU/square of an avirulent nalidixic acid-resistant strain of Salmonella typhimurium. Melons were washed by immersion in 1500 ml of water or 200 ppm total chlorine and allowed to soak or were scrubbed over the entire melon surface with a sterile vegetable brush for 60 s. Inoculated sites, uninoculated sites ("next to" sites) that were adjacent to inoculated sites, and sites on the side of the melon opposite (remote sites) the inoculated site were excised and pummeled in a stomacher for 2 min prior to plating onto tryptic soy or bismuth sulfite agar supplemented with 50 microg/ml nalidixic acid. S. typhimurium was reduced on the rind of cantaloupe by 1.8 log CFU/melon after soaking for 60 s in 200 ppm total chlorine, which was significantly better than the 0.7 log CFU/melon achieved with soaking in water. For both water and 200 ppm total chlorine, scrubbing with a vegetable brush was shown to be significantly (0.9 log CFU/cantaloupe) more effective than soaking alone. When honeydew melons were soaked or scrubbed in water, reductions of 2.8 log CFU/melon or >4.6 log CFU/melon (four of five samples), respectively, were observed. However, when water treatments were used, the presence of Salmonella-positive "next to" and remote sites indicated that bacteria were spread from inoculated site on the rind to uninoculated sites either through the rinse water (40-70 CFU/ml of Salmonella) or scrub brush (400-500 CFU/brush). Transfer to other sites occurred more often with cantaloupe than honeydew melons. This transfer was eliminated when 200 ppm total chlorine was used. When 200 ppm total chlorine was used, Salmonella could not be detected in the water or on the scrub brush. For optimal microbial removal in food service and home settings, melons should be scrubbed with a clean brush under running water. However, to ensure the benefits of brushing, instructions for cleaning and sanitizing brushes must also be emphasized. For food service settings where concentration and pH can be adequately measured, the use of chlorinated water may provide additional benefit.  相似文献   

9.
Contamination of Vibrio parahaemolyticus and Vibrio vulnificus in oysters is a food safety concern. This study investigated effects of electrolyzed oxidizing (EO) water treatment on reducing V. parahaemolyticus and V. vulnificus in laboratory-contaminated oysters. EO water exhibited strong antibacterial activity against V. parahaemolyticus and V. vulnificus in pure cultures. Populations of V. parahaemolyticus (8.74 x 10(7) CFU/ml) and V. vulnificus (8.69 x 10(7) CFU/ml) decreased quickly in EO water containing 0.5% NaCl to nondetectable levels (> 6.6 log reductions) within 15 s. Freshly harvested Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus or V. vulnificus at levels of 10(4) and 10(6) most probable number (MPN)/g and treated with EO water (chlorine, 30 ppm; pH 2.82; oxidation-reduction potential, 1131 mV) containing 1% NaCl at room temperature. Reductions of V. parahaemolyticus and V. vulnificus in oysters were determined at 0 (before treatment), 2, 4, 6, and 8 h of treatment. Holding oysters inoculated with V. parahaemolyticus or V. vulnificus in the EO water containing 1% NaCl for 4 to 6 h resulted in significant (P < 0.05) reductions of V. parahaemolyticus and V. vulnificus by 1.13 and 1.05 log MPN/g, respectively. Extended exposure (> 12 h) of oysters in EO water containing high levels of chlorine (> 30 ppm) was found to be detrimental to oysters. EO water could be used as a postharvest treatment to reduce Vibrio contamination in oysters. However, treatment should be limited to 4 to 6 h to avoid death of oysters. Further studies are needed to determine effects of EO water treatment on sensory characteristics of oysters.  相似文献   

10.
Numerous Escherichia coli O157:H7 outbreaks have been linked to consumption of fresh lettuce. The development of effective and easily implemented wash treatment could reduce such incidents. The purpose of this study was to evaluate the addition of food-grade detergents to sanitizer solutions for inactivation of E. coli O157:H7 on Romaine lettuce. Freshly-cut leaves of Romaine lettuce were dip-inoculated to achieve a final cell concentration of 7.8 ± 0.2 log CFU/g, air-dried for 2 h, and stored overnight at 4 °C. Leaves were then washed for 2 min in an experimental short chain fatty acid formulation (SCFA) or in one of the following solutions with or without 0.2% dodecylbenzenesulfonic acid or 0.2% sodium 2-ethyl hexyl sulfate: 1) deionized water; 2) 100 ppm chlorine dioxide; 3) 100 ppm chlorine; and 4) 200 ppm chlorine. Following wash treatment, samples were blended in neutralizing buffer (1:3) and surface plated on the selective media CT-SMAC. The efficacy of wash treatments, with or without the detergents, in inactivating E. coli O157:H7 cells on lettuce leaves were not significantly different. The most effective wash solution was SCFA, which was capable of reducing E. coli O157:H7 populations by more than 5 log CFU/g. The rest of the wash treatments resulted in a population reduction of less than 1 log CFU/g. The effectiveness of SCFA surpasses that of other sanitizer treatments tested in this study and requires further research to optimize treatments to preserve lettuce quality. Conventional detergents did not enhance the efficacy of any of the wash treatments tested during this study.  相似文献   

11.
This study evaluated the efficacy of ozone, chlorine, and hydrogen peroxide to destroy Listeria monocytogenes planktonic cells and biofilms of two test strains, Scott A and 10403S. L. monocytogenes was sensitive to ozone (O3), chlorine, and hydrogen peroxide (H2O2). Planktonic cells of strain Scott A were completely destroyed by exposure to 0.25 ppm O3 (8.29-log reduction, CFU per milliliter). Ozone's destruction of Scott A increased when the concentration was increased, with complete elimination at 4.00 ppm O3 (8.07-log reduction, CFU per chip). A 16-fold increase in sanitizer concentration was required to destroy biofilm cells of L. monocytogenes versus planktonic cells of strain Scott A. Strain 10403S required an ozone concentration of 1.00 ppm to eliminate planktonic cells (8.16-log reduction, CFU per milliliter). Attached cells of the same strain were eliminated at a concentration of 4.00 ppm O3 (7.47-log reduction, CFU per chip). At 100 ppm chlorine at 20 degrees C, the number of planktonic cells of L. monocytogenes 10403S was reduced by 5.77 log CFU/ml after 5 min of exposure and by 6.49 log CFU/ml after 10 min of exposure. Biofilm cells were reduced by 5.79 log CFU per chip following exposure to 100 ppm chlorine at 20 degrees C for 5 min, with complete elimination (6.27 log CFU per chip) after exposure to 150 ppm at 20 degrees C for 1 min. A 3% H2O2 solution reduced the initial concentration of L. monocytogenes Scott A planktonic cells by 6.0 log CFU/ml after 10 min of exposure at 20 degrees C, and a 3.5% H2O2 solution reduced the planktonic population by 5.4 and 8.7 log CFU/ml (complete elimination) after 5 and 10 min of exposure at 20 degrees C, respectively. Exposure of cells grown as biofilms to 5% H2O2 resulted in a 4.14-log CFU per chip reduction after 10 min of exposure at 20 degrees C and in a 5.58-log CFU per chip reduction (complete elimination) after 15 min of exposure.  相似文献   

12.
The effects of various sanitizers on the viability and cellular injury to structures of Escherichia coli and Listeria innocua were investigated. A food grade organic acidic formulation (pH 2.5) and acidic, neutral, and basic electrolyzed water [AEW (pH 2.7, oxidation reduction potential; ORP: 1100 mV, free available chlorine; FAC: 150 ppm), NEW (pH 6.9, ORP: 840 mV, FAC: 150 ppm), BEW (pH 11.6, ORP: -810 mV)] were used to treat E. coli and L. innocua cells. After 10 min of exposure to the sanitizers, changes to the bacterial numbers and cell structures were evaluated by plate counting and transmission electron microscopy (TEM), respectively. It was concluded from the results that the sanitizers reduced the E. coli cells between 2 and 3 log CFU/mL. Except for the BEW treatment, reductions in L. innocua population were greater (>1 log CFU/mL) than that of E. coli for all treatments. Data from the TEM showed that all sanitizers caused changes to the cell envelope and cytoplasm of both organisms. However, smaller changes were observed for L. innocua cells. Decrease in the integrity of the cell envelope and aggregation of the cytoplasmic components appeared to be mainly because of exposure to the sanitizers. The organic acid formulation and AEW were the most effective sanitizers against bacterial cells, indicating that penetration of acidic substances effectively caused the cell inactivation. PRACTICAL APPLICATION: An understanding of the method in which E-water and an acidic sanitizer cause injury to E. coli and L. innocua would be helpful in selecting an effective chemical agent as a food safety tool. This will allow a scientist to target similar microorganisms such as food borne bacteria with structures that are vulnerable to the sanitizer.  相似文献   

13.
This study investigates the properties of electrolyzed oxidizing (EO) water for the inactivation of pathogen and to evaluate the chemically modified solutions possessing properties similar to EO water in killing Escherichia coli O157:H7. A five-strain cocktail (10(10) CFU/ml) of E. coli O157:H7 was subjected to deionized water (control), EO water with 10 mg/liter residual chlorine (J.A.W-EO water), EO water with 56 mg/liter residual chlorine (ROX-EO water), and chemically modified solutions. Inactivation (8.88 log10 CFU/ml reduction) of E. coli O157:H7 occurred within 30 s after application of EO water and chemically modified solutions containing chlorine and 1% bromine. Iron was added to EO or chemically modified solutions to reduce oxidation-reduction potential (ORP) readings and neutralizing buffer was added to neutralize chlorine. J.A.W-EO water with 100 mg/liter iron, acetic acid solution, and chemically modified solutions containing neutralizing buffer or 100 mg/liter iron were ineffective in reducing the bacteria population. ROX-EO water with 100 mg/liter iron was the only solution still effective in inactivation of E. coli O157:H7 and having high ORP readings regardless of residual chlorine. These results suggest that it is possible to simulate EO water by chemically modifying deionized water and ORP of the solution may be the primary factor affecting microbial inactivation.  相似文献   

14.
The effectiveness of electrolyzed (EO) water at killing Enterobacter aerogenes and Staphylococcus aureus in pure culture was evaluated. One milliliter (approximately 10(9) CFU/ml) of each bacterium was subjected to 9 ml of EO water or control water (EO water containing 10% neutralizing buffer) at room temperature for 30 s. Inactivation (reduction of > 9 log10 CFU/ ml) of both pathogens occurred within 30 s after exposure to EO water containing approximately 25 or 50 mg of residual chlorine per liter. The effectiveness of EO water in reducing E. aerogenes and S. aureus on different surfaces (glass, stainless steel, glazed ceramic tile, unglazed ceramic tile, and vitreous china) was also evaluated. After immersion of the tested surfaces in EO water for 5 min without agitation, populations of E. aerogenes and S. aureus were reduced by 2.2 to 2.4 log10 CFU/ cm2 and by 1.7 to 1.9 log10 CFU/cm2, respectively, whereas washing with control water resulted in a reduction of only 0.1 to 0.3 log10 CFU/cm2. The washing of tested surfaces in EO water with agitation (50 rpm) reduced populations of viable cells on the tested surfaces to < 1 CFU/cm2. For the control water treatment with agitation, the surviving numbers of both strains on the tested surfaces were approximately 3 log10 CFU/cm2. No viable cells of either strain were observed in the EO water after treatment, regardless of agitation. However, large populations of both pathogens were recovered from control wash solution after treatment.  相似文献   

15.
Studies have demonstrated that electrolyzed oxidizing (EO) water is effective in reducing foodborne pathogens on fresh produce. This study was undertaken to determine the efficacy of EO water and two different forms of chlorinated water (chlorine water from Cl2 and Ca(OCl)2 as sources of chlorine) in inactivating Salmonella on alfalfa seeds and sprouts. Tengram sets of alfalfa seeds inoculated with a five-strain cocktail of Salmonella (6.3 x 10(4) CFU/g) were subjected to 90 ml of deionized water (control), EO water (84 mg/liter of active chlorine), chlorine water (84 mg/liter of active chlorine), and Ca(OCl)2 solutions at 90 and 20,000 mg/liter of active chlorine for 10 min at 24 +/- 2 degrees C. The application of EO water, chlorinated water, and 90 mg/liter of Ca(OCl)2 to alfalfa seeds for 10 min reduced initial populations of Salmonella by at least 1.5 log10 CFU/g. For seed sprouting, alfalfa seeds were soaked in the different treatment solutions described above for 3 h. Ca(OCl)2 (20,000 mg/liter of active chlorine) was the most effective treatment in reducing the populations of Salmonella and non-Salmonella microflora (4.6 and 7.0 log10 CFU/g, respectively). However, the use of high concentrations of chlorine generates worker safety concerns. Also, the Ca(OCl)2 treatment significantly reduced seed germination rates (70% versus 90 to 96%). For alfalfa sprouts, higher bacterial populations were recovered from treated sprouts containing seed coats than from sprouts with seed coats removed. The effectiveness of EO water improved when soaking treatments were applied to sprouts in conjunction with sonication and seed coat removal. The combined treatment achieved 2.3- and 1.5-log10 CFU/g greater reductions than EO water alone in populations of Salmonella and non-Salmonella microflora, respectively. This combination treatment resulted in a 3.3-log10 CFU/g greater reduction in Salmonella populations than the control (deionized water) treatment.  相似文献   

16.
Lee SY  Baek SY 《Food microbiology》2008,25(4):582-587
Escherichia coli O157:H7 contaminated spinach has recently caused several outbreaks of human illness in the USA and Canada. However, to date, there has been no study demonstrating an effective way to eliminate E. coli O157:H7 in spinach. Therefore, this study was conducted to investigate the effect of chemical sanitizers alone or in combination with packaging methods such as vacuum and modified atmosphere packaging (MAP) on inactivating E. coli O157:H7 in spinach during storage time. Spinach inoculated with E. coli O157:H7 was packaged in four different methods (air, vacuum, N(2) gas, and CO(2) gas packaging) following treatment with water, 100 ppm chlorine dioxide, or 100 ppm sodium hypochlorite for 5 min at room temperature and stored at 7+/-2 degrees C. Treatment with water did not significantly reduce levels of E. coli O157:H7 in spinach. However, treatment with chlorine dioxide and sodium hypochlorite significantly decreased levels of E. coli O157:H7 by 2.6 and 1.1 log(10)CFU/g, respectively. Levels of E. coli O157:H7 in samples packaged in air following treatments grew during storage time, whereas levels were maintained in samples packaged in other packaging methods (vacuum, N(2) gas, and CO(2) gas packaging). Therefore there were significant differences (about 3-4 log) of E. coli O157:H7 populations between samples packed in air and other packaging methods following treatment with chemical sanitizers after 7 days storage. These results suggest that the combination of treatment with chlorine dioxide and packaging methods such as vacuum and MAP may be useful for improving the microbial safety of spinach against E. coli O157:H7 during storage.  相似文献   

17.
Salmonella Typhimurium and Campylobacter jejuni were inoculated in scalding water, in chilled water, and on chicken skins to examine the effects of scalding temperature (50, 55, and 60 degrees C) and the chlorine level in chilled water (0, 10, 30, and 50 ppm), associated with the ages of scalding water (0 and 10 h) and chilled water (0 and 8 h), on bacterial survival or death. After scalding at 50 and 60 degrees C, the reductions of C. jejuni were 1.5 and 6.2 log CFU/ml in water and <1 and >2 log CFU/cm2 on chicken skins; the reductions of Salmonella Typhimurium were <0.5 and >5.5 log CFU/ml in water and <0.5 and >2 log CFU/cm2 on skins, respectively. The age of scalding water did not significantly (P > 0.05) affect bacterial heat sensitivity. However, the increase in the age of chilled water significantly (P < 0.05) reduced the chlorine effect. In 0-h chilled water. C. jejuni and Salmonella Typhimurium were reduced by 3.3 and 0.7 log CFU/ml, respectively, after treatment with 10 ppm of chlorine and became nondetectable with 30 and 50 ppm of chlorine. In 8-h chilled water, the reduction of C. jejuni and Salmonella Typhimurium was <0.5 log CFU/ml with 10 ppm of chlorine and ranged from 4 to 5.5 log CFU/ml with 50 ppm of chlorine. Chlorination of chilled water did not effectively reduce the bacteria attached on chicken skins. The D-values of Salmonella Typhimurium and C. jejuni were calculated for the prediction of their survival or death in the poultry scalding and chilling.  相似文献   

18.
The use of water flotation tanks during apple packing increases the risk of contamination of apples by spores of Penicillium expansum, which may accumulate in the recirculating water. Routine addition of sanitizers to the water may prevent such contamination. Sodium hypochlorite (NaOCl), chlorine dioxide (ClO2), and electrolyzed oxidizing (EO) water have varied activity against spores of P. expansum, and their effectiveness could be enhanced using surfactants. The objective of this study was to determine the ability of three nonionic surfactants, polyoxyethylene sorbitan monooleate (Tween 80), polyoxyethylene sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20), to enhance the efficacy of NaOCl, ClO2, and EO water against spores of P. expansum in aqueous suspension at various temperatures and pH conditions. The efficacy of NaOCl solutions was enhanced by the addition of surfactants at both pH 6.3 and pH 8 (up to 5 log CFU reduction). EO water and ClO2 were effective against P. expansum spores (up to 5 log CFU and 4 log CFU reduction, respectively), but addition of surfactants was not beneficial. All solutions were less effective at 4 degrees C compared to 24 degrees C irrespective of the presence of surfactants. Nonionic surfactants could potentially be used with NaOCl to improve control of P. expansum in flotation tanks, but the efficacy of such formulations should be validated under apple packing conditions.  相似文献   

19.
The effectiveness of various disinfectants against two potentially pathogenic Yersinia enterocolitica strains (Y. enterocolitica W1024 O:9 [strain A] and Y. enterocolitica B O:5 Lis Xz [strain B]) on shredded lettuce was examined. Dip-wash treatments using 25, 100, and 300 ppm of chlorine at 4 and 22 degrees C, 0.2% Orenco Peel 40, 0.1% Tergitol, 0.5% acetic acid, and 0.5% lactic acid at 22 degrees C were performed. Surfactants and organic acids were also tested in combination with 100 ppm of chlorine. Reductions of Y. enterocolitica counts with 100 ppm (2.68 log10 for strain A and 2.36 log10 for strain B at 22 degrees C) and 300 ppm of chlorine (3.15 log10 for strain A and 2.55 log10 for strain B at 4 degrees C) were observed after 10 min. Inhibitory effect of different chlorine solutions was not significantly (P < 0.05) influenced by temperature. Surfactants in combination with chlorine were more effective than surfactants alone. Treatment with 0.2% Orenco Peel 40 plus 100 ppm of chlorine resulted in reductions of 2.69 log10 CFU/g for strain A and 3.18 1og10 CFU/g for strain B at 10 min. Dip solutions containing 0.1% Tergitol plus 100 ppm of chlorine produced a significant reduction of 2.73 log10 CFU/g in strain A (P < 0.05). With the 0.5% lactic acid plus 100 ppm of chlorine combination, inactivation of Y. enterocolitica was >6 log10. The bactericidal effect of disinfectants was related to the concentration, exposure time, combination with chlorine (surfactants and organic acids), and susceptibility of each strain. Since the presence of pathogenic Y. enterocolitica on ready-to-use vegetables represents a health hazard, treatments as effective as 0.5% lactic acid plus 100 ppm of chlorine are recommended for washing of fresh lettuce.  相似文献   

20.
The prevalence of Alicyclobacillus spp. and other spore-forming spoilage organisms in food handling and processing environments presents a sanitation challenge to manufacturers of products such as juices and beverages. The objectives of this study were to determine the efficacy of chlorine dioxide and sodium hypochlorite in killing Alicyclobacillus spores in situ and to evaluate the efficacy of various chlorine dioxide and hypochlorite sanitizing regimes on Alicyclobacillus spp. spores on stainless steel, wood, and rubber conveyor material. Five or two log CFU/ml spore concentrations were left in aqueous solution or inoculated onto stainless steel, rubber, or wood coupons and challenged with sanitizer for varied time intervals. After treatment, the coupons were placed in sterile sample bags, massaged with neutralizing buffer, and enumerated on Ali agar. Surfaces were also examined before and after treatment by scanning electron microscopy to confirm destruction or removal of the spores. For both five and two log CFU/ml spore concentrations, treatments of 50 and 100 ppm of chlorine dioxide and 1000 and 2000 ppm of hypochlorite, respectively, were the most effective. Of the range of chlorine dioxide concentrations and contact time regimes evaluated for all surfaces, the most effective concentration/time regime applied was 100 ppm for 10 min. Reductions ranged from 0 to 4.5 log CFU/coupon. Chlorine dioxide was least effective when applied to wood. Hypochlorite was not efficient at eliminating Alicyclobacillus spores from any of the food contact surfaces at any time and concentration combinations tested. Chlorine dioxide is an alternative treatment to kill spores of Alicyclobacillus spp. in the processing environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号