首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
硫酸盐腐蚀是引起混凝土表面强度、耐久性退化的一个重要因素。通过硫酸盐干湿交替加速侵蚀试验模拟硫酸盐环境,对先受硫酸盐腐蚀后粘贴CFRP-混凝土界面黏结性能退化规律进行研究。结果表明:硫酸盐干湿交替作用对混凝土强度和CFRP-混凝土界面黏结性能影响较大,随腐蚀时间呈现先小幅增加后加速下降的趋势。在试验和已有界面理论的基础上,引入考虑腐蚀时间对混凝土强度影响的界面黏结-滑移模型,通过模型预测数据与试验数据的对比分析,该模型能够很好反映先受硫酸盐干湿交替作用后粘贴CFRP界面黏结性能退化规律。  相似文献   

2.
为了考察硫酸盐环境下CFRP-混凝土界面黏结性能的退化规律,开展了162块CFRP-混凝土试件的单剪试验,研究了混凝土黏结面粗糙程度、混凝土强度等级、腐蚀龄期对CFRP-混凝土界面极限荷载、最大滑移量、黏结强度、断裂能的影响,并基于SEM扫描电镜技术分析了界面破坏机理。结果表明,混凝土强度从C30提升至C50,极限荷载上升幅度在1%~7%不等,总体上混凝土强度等级对提高界面黏结性能的影响不明显;硫酸盐环境下,环氧树脂胶体能较好的保护CFRP黏结区域;随着腐蚀龄期的增长,CFRP-混凝土界面的黏结性呈先增高后降低的趋势,增强点出现在第7天,30 d后界面极限荷载呈高速下降趋势;界面能在7 d时达到最大,随后逐渐降低;硫酸钠晶体的膨胀劣化是影响CFRP-混凝土界面黏结性能的主要因素。  相似文献   

3.
硫酸盐溶液对CFRP-混凝土黏结性能的影响   总被引:1,自引:0,他引:1  
随着CFRP外贴加固混凝土结构技术的应用,CFRP-混凝土黏结界面的耐久性问题也突显出来.为了研究和分析CFRP-混凝土在恶劣条件下的黏结性能,进行了硫酸钠溶液的浸泡及干湿循环试验,并考察CFRP-混凝土拉伸剪切强度随劣化时间的变化特性.研究表明,硫酸钠溶液浸泡对CFRP-混凝土的黏结强度影响不大;但混凝土在受到硫酸盐溶液浸泡后再粘贴CFRP片材,其黏结强度比未经劣化的CFRP-混凝土的黏结强度均有不同程度降低;硫酸盐溶液干湿循环对CFRP-混凝土黏结强度影响较大.  相似文献   

4.
为了考察碳纤维复合材料(carbon fiber reinforced polymer, CFRP)与混凝土结构在氯盐干湿循环作用下界面黏结强度,开展不同干湿循环周期下混凝土的弹性模量、抗压强度和CFRP混凝土单剪试件界面黏结性能的腐蚀劣化试验研究。通过模拟氯盐的干湿循环作用和自主设计的单剪试验稳定装置,对混凝土基体的腐蚀劣化性能和界面的有效黏结长度进行研究,基于Popovics方程分别对不同腐蚀周期的界面黏结应力-滑移关系和界面断裂能进行研究。在此基础上,分析干湿循环作用下CFRP-混凝土界面黏结强度的劣化机理,并建立界面的时变黏结强度计算模型。结果表明,随着干湿循环周期的增长混凝土基体的弹性模量整体变化不大,而抗压强度则呈现出先增大后减小的趋势,最终腐蚀120 d后较未腐蚀混凝土抗压强度降11.2%;界面的有效黏结长度从未腐蚀的120 mm降低到腐蚀120 d后的72 mm,界面的断裂能也大幅下降。基于Popovics方程得到的腐蚀环境下CFRP混凝土界面黏结应力-滑移关系可揭示界面黏结强度劣化机理,建立的界面时变黏结强度模型有效,可应用于不同干湿循环作用下CFRP混凝土界面黏结强度的计算。  相似文献   

5.
《工业建筑》2017,(11):19-22
通过硫酸盐干湿循环加速腐蚀试验模拟硫酸盐环境,对硫酸盐干湿循环作用下碳纤维增强复材(CFRP)-混凝土界面的黏结性能进行了研究。结果表明:随着腐蚀时间的延长,破坏面进入混凝土层的深度逐渐变浅,黏结强度逐渐降低。通过对试验结果的统计回归分析,建立了硫酸盐干湿循环作用下CFRP-混凝土界面黏结强度退化模型,预测模型能够很好地反映正拉黏结强度随硫酸盐腐蚀时间的退化规律。  相似文献   

6.
为了对海水环境下CFRP-混凝土界面性能进行研究,采用42个CFRP片材进行了CFRP材料物理力学性能试验,采用72个混凝土单剪试件对海水环境下CFRP-混凝土界面黏结性能进行试验。结果表明:CFRP材料的耐久性良好,长时间的海水腐蚀对CFRP材料的物理性能没有太大影响;CFRP-混凝土黏结强度随腐蚀时间增加而降低;长时间海水腐蚀对界面延性有不利影响,对界面应变发展规律和黏结滑移关系没有明显影响。  相似文献   

7.
通过双面剪切试验设计了九组试验方案,以CFRP黏结长度、黏结宽度、黏贴层数三个因素为变量,根据CFRP应变、黏结应力的变化规律,研究了C30混凝土试件和碳纤维片材界面的黏结性能,以及在各级荷载作用下沿黏结长度的分布情况,分析了CFRP-混凝土界面的有效黏结长度。结果表明,随着CFRP黏结厚度、长度、宽度的增大,试件的极限荷载和应变均明显增加,但对初始剥离荷载和应变的影响不大;当继续增加荷载时,应力传递区域的长度不断加大,呈现动态变化趋势。  相似文献   

8.
针对3种强度、6种界面粗糙度的54块混凝土试件,采用单向剪切试验,研究了表面粗糙度对碳纤维增强复合材料(CFRP)-混凝土梁界面黏结性能的影响.结果表明:6种界面中,粗糙度为0.44的混凝土试件界面黏结性能最佳,CFRP-混凝土的极限荷载和黏结强度较粗糙度为0.25的试件分别提高36%~51%,124%~221%;粗糙度对混凝土界面有效黏结长度影响较大,与现有模型中的有效黏结长度计算值相比,考虑粗糙度和黏结树脂后的有效黏结长度最高可提高273%;6种界面的有效黏结长度随粗糙度的提高,总体呈现减小趋势;粗糙度为0.25~0.44的混凝土界面τ-s曲线在脆性区域上的刚度相差无几,界面越粗糙,脆性区间越短;进入塑性阶段后,6种界面的CFRP-混凝土梁黏结滑移曲线均以不同斜率下降,最终以0.04~0.35mm的滑移值剥离破坏.  相似文献   

9.
采用双面剪切试验,通过对5组双剪试件分别施加不同应力水平的疲劳荷载,对比分析各组试件的破坏特征、剪应变分布、端部滑移演化规律以及200万次疲劳后的剩余黏结承载能力,讨论了不同应力水平对CFRP-混凝土界面黏结疲劳性能的影响.试验结果表明:疲劳荷载作用下CFRP-混凝土试件均会在黏结界面下较浅的混凝土表层发生剥离,剥离长度随应力水平的提高而增长,并且两者近似呈线性关系;随着疲劳次数的增加,CFRP上的应力-应变从加载端逐渐向自由端传递,界面的端部滑移量呈增长趋势;应力水平越高对剪应变沿黏结长度的分布规律及端部滑移情况的影响越明显;疲劳荷载作用后,剩余的黏结长度大于有效黏结长度时,界面极限承载力无明显变化,反之,应力水平越高,剩余界面黏结承载力的下降幅度越大.  相似文献   

10.
为了研究GFRP(玻璃纤维)与CFRP(碳纤维)混杂后的界面性能,采用双面剪切的试验方式,进行了G/CFRP(混杂后纤维)与混凝土剥离承载力分析、应变分析以及粘结剪应力分析。试验表明:GFRP经过CFRP混杂后,可以有效地提高界面剥离承载力。G/CFRP-混凝土界面剥离有效粘贴长度在60mm左右,GFRP-混凝土界面剥离有效粘贴长度在80mm左右。  相似文献   

11.
通过四点弯曲试验,研究了冻融循环与持载对碳纤维增强复合材料(CFRP)加固高强钢筋混凝土梁变形性能的影响。分析了不同环境作用下试验梁的承载力、刚度及破坏形态变化规律。结果表明:在冻融循环单独作用下,试验梁的性能变化很小;冻融与持载耦合作用时,两者均对梁的性能造成不利影响,且随着冻融循环次数的增加,承受持载梁的CFRP-混凝土界面黏结性能有所下降;在冻融循环作用下,CFRP-混凝土界面存在应力时会增大界面的劣化程度,从而引起加固梁性能的下降。  相似文献   

12.
有效粘结长度是碳纤维增强片材(Carbon Fiber Reinforced Polymer,CFRP)与混凝土的临界粘结长度,超过这个临界粘结长度,CFRP与混凝土界面承载能力就不会增加.通过粘贴CFRP片材加固切口混凝土梁三点弯曲试验,研究CFRP片材粘结厚度、粘结宽度以及混凝土强度等级对CFRP与混凝土之间有效粘结长度的影响.结果表明:随着CFRP粘结厚度的增加,CFRP与混凝土之间的有效粘结长度相应提高,但是,有效粘结长度与CFRP粘结厚度并非线性关系;CFRP粘结宽度、混凝土强度等级等对有效粘结长度影响不显著.基于对试验结果的分析,提出了CFRP片材与混凝土有效粘结长度计算公式,计算结果与试验结果符合较好.  相似文献   

13.
外粘贴CFRP加固混凝土结构的耐久性取决于CFRP材料、CFRP-混凝土粘结界面的耐久性以及外界环境。本文主要针对海洋环境下CFRP材料、混凝土、CFRP-混凝土粘结界面以及加固后混凝土结构的耐久性进行了试验研究。代表性结构为条带包裹CFRP和全裹CFRP的两种混凝土柱。研究表明,海洋环境对材料、粘结界面和加固后柱的性能均有影响,使其相应的力学性能指标值降低。环境作用后,加固柱的承载力降低幅度较大,但并非材料、粘结界面等劣化程度的叠加。而且柱的延性和刚度降低幅度很小,破坏形式主要是CFRP被崩断。两种包裹方式均可大幅度提高混凝土柱的承载力和延性,但提高幅度与CFRP用量不成比例。条带包裹CFRP的柱比全裹CFRP的柱受环境影响的劣化程度大。  相似文献   

14.
通过双面剪切试验,研究了冻融环境下CFRP-高性能混凝土界面粘结性能的发展规律。对比分析了未经冻融和经历25、50、100、150、200及300次冻融循环作用试件的破坏特征、剪应变分布、荷载滑移曲线、粘结承载力以及粘结破坏机理。结果表明,所有试件的界面破坏均发生在混凝土表层内,但随着冻融循环次数的增加,破坏界面有向胶层发展的趋势;经受冻融循环次数较少时(25、50次),界面的粘结强度、刚度及开裂荷载的变化不明显,甚至略微提高;但随着冻融循环次数的进一步增加,界面粘结性能有明显的变化,界面粘结强度、端部滑移量减小,刚度退化,初始开裂荷载水平降低,非线性特征增强。粘结极限承载力与混凝土立方体抗压强度均随冻融循环次数的增长存在先提高后下降的趋势,混凝土强度变化是界面粘结性能变化的最重要因素。  相似文献   

15.
通过自行设计的试验方法,研究了30组粘贴有碳纤维增强塑料布(CFRP布)的混凝土试件粘结界面的破坏形态、粘结应力和碳纤维增强塑料布应变分布特性以及粘结破坏的发展过程.结果表明,粘结应力由碳纤维增强塑料布的加载端向自由端逐渐传递,破坏瞬时发生,破坏形式以剥离破坏为主;存在一个有效粘结长度,约为100 mm.研究结果说明自行设计的粘结试验方法有一定可行性,可为测定CFRP布-混凝土界面粘结强度指标提供新的思路.  相似文献   

16.
通过粘贴碳纤维增强片材(carbon fiber reinforced polymer,简称CFRP)加固切口混凝土梁的三点弯曲试验,研究CFRP片材的粘结厚度、粘结长度、粘结宽度以及混凝土强度等级对CFRP片材与混凝土极限粘结力的影响。试验结果表明:随着CFRP片材粘结厚度的增加,CFRP片材与混凝土的极限粘结力相应提高;当CFRP片材粘结长度不超过其有效粘结长度时,极限粘结力随CFRP粘结长度的增加而增大;混凝土强度等级对CFRP与混凝土极限粘结力的影响较小。基于对试验结果的分析,提出了CFRP片材与混凝土极限粘结力的计算公式,计算结果与试验结果符合较好。  相似文献   

17.
为研究纤维增强塑料(FRP)筋与海水海砂混凝土(SWSSC)的黏结性能,选择4种碳纤维增强塑料(CFRP)筋材和2个强度等级的SWSSC,制作了72个试件进行拉拔试验,研究了黏结长度、筋材直径、混凝土强度和筋材表面处理等参数对黏结性能的影响; 开展了SWSSC试件与普通混凝土(NC)试件的对比试验,获取了试件的破坏形态和黏结应力-滑移曲线。基于ACI 440.1R-06公式提出了新的黏结强度计算公式。结果表明:CFRP筋与SWSSC的黏结破坏模式可以分为拔出破坏和劈裂破坏; 黏结强度随黏结长度的增加而逐步减小,且与(ld/db)-0.41呈近似关系(ld为黏结长度,db为CFRP筋直径); 黏结强度随混凝土强度的提高而增大,但与CFRP筋材直径的相关性不明显; 表面喷砂能够显著提高CFRP筋与SWSSC的黏结性能,黏结强度增长系数可取为1.76; 相比于NC,CFRP筋与SWSSC的黏结强度有小幅度降低; 采用ACI 440.1R-06和CSA S806-02公式得到的预测结果与试验结果之间误差较大,均不适合直接用于估算CFRP筋与SWSSC的抗拔强度; 基于ACI 440.1R-06提出的新黏结强度计算公式计算结果与试验结果吻合程度较高,但其适用性需要进一步验证。  相似文献   

18.
为了研究盐腐蚀环境下内嵌FRP筋加固混凝土界面的黏结性能,对27个内嵌FRP筋加固混凝土试件进行盐腐蚀后的单端拉拔试验,分析试件的受力过程和破坏模式,研究内嵌FRP筋黏结长度、腐蚀时间和FRP筋类型对界面黏结性能的影响。结果表明:盐腐蚀的试件破坏模式分为结构胶劈裂、FRP筋拉断和结构胶劈裂且FRP筋弯折等3种,且以结构胶劈裂破坏为主。盐腐蚀环境下内嵌FRP筋混凝土试件的黏结应力与黏结长度、破坏模式与腐蚀时间有关。盐腐蚀环境会影响混凝土、黏结材料及FRP筋的力学性能,加剧黏结界面失效破坏。腐蚀时间为30 d和90 d的内嵌BFRP筋加固混凝土试件的耐盐腐蚀能力高于内嵌GFRP筋加固混凝土试件的,腐蚀时间为60 d的内嵌GFRP筋加固混凝土试件的耐盐腐蚀能力优于内嵌BFRP筋试件的。根据试验数据拟合了盐腐蚀环境下内嵌FRP筋加固混凝土界面黏结-滑移本构关系,其拟合优度达到0.988 0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号