首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 61 毫秒
1.
磁流变减振器阻尼力分析   总被引:1,自引:0,他引:1  
根据剪切模式和流动模式共同作用机理,分析了磁流变减振器的工作原理;基于Navier-Stokes方程,分析了轴对称模型的流变学方程;利用Bingham模型,描述了磁流变液的本构方程,得出了减振器阻尼力方程;基于阻尼力的表达式,分析了间隙、长度、半径、磁场强度和活塞速度对阻尼力的影响.结果表明:间隙的减小或磁场强度的增加会使阻尼力迅速增加;其它因素对阻尼力的影响相对较小.  相似文献   

2.
磁流变减振器利用磁流变液体黏度的连续可控特性实现了减振器阻尼力连续可调,从而可以实现汽车半主动悬架的实时控制,基于此制作了一款磁流变减振器,按照汽车平顺性试验标准,对整车做了平顺性试验,试验结果表明汽车上各测点的振动加速度幅值明显下降,有效提高了汽车的平顺性。  相似文献   

3.
传统CFD仿真方法通常只考虑风载荷对汽车气动性能的作用,忽略了车身结构振动与气流之间耦合作用带来的影响,导致计算结果与真实汽车行驶状况存在一定偏差。以1/4标准MIRA模型为研究对象,通过双向显式流固耦合仿真方法将流固耦合效应引入到数值计算中,得到不同工况下的气动力、表面压力、振动频率以及车身姿态角等数据,分析与传统仿真方法在计算结果上的差异,再利用风洞测试技术验证仿真结果的准确性。对比有无耦合仿真及试验结果表明:耦合仿真与试验结果更加吻合,各项数据偏差都在5%以内,从而验证了耦合仿真方法的准确性;随车速增加流固耦合效应影响增大,特别是对气动升力的影响较大,直接影响汽车操纵稳定性,因此在高速时流固耦合效应带来的影响不能忽略。  相似文献   

4.
基于流固耦合的叶片动力特性分析   总被引:2,自引:0,他引:2  
在考虑耦合流场与旋转预应力条件下,建立了对应的叶片流固耦合系统的动力特性方程.采用ANSYS与FLUENT对整体叶片的耦合模态进行了计算,并利用实验获得气流压力脉动数据,对叶片振动进行了瞬态分析.结果表明:在旋转预应力与耦合流场压力作用下,叶片模态频率约有9Hz的上升,模态振型的最大位移位置点转移,振动方向改变,前三阶相对振幅分别从29.128,19.400,44.566下降到28.945,19.285,44.562;叶片最大变形和加速度位于前缘的上端,最大应力点集中在叶片根部一侧.  相似文献   

5.
建立了二自由度1/4汽车半主动悬架模型,在线性最优化理论的基础上设计出磁流变减振器半主动悬架的最优控制器,并在MATLAB/SIMULINK环境下进行仿真,结果表明采用最优控制器的流变减振器半主动悬架有效地改善了汽车行驶平顺性和乘坐舒适性。  相似文献   

6.
汽车磁流变减振器多项式模型的研究   总被引:1,自引:0,他引:1  
将优化后的磁流变减振器放在MTS849减振器试验台上进行试验,在不同的减振器活塞运动速度下,改变通电电流,测试磁流变减振器的示功图和速度特性。利用试验数据,进行多项式拟合,精确的建立了该减振器的阻尼力模型,便于对其半主动悬架实施实时控制。  相似文献   

7.
推导出基于混合工作模式磁流变减振器的阻尼力计算公式,并利用MATLAB/SIMULINK建立其工作性能仿真模型,结果表明与磁流变减振器的数学模型相符,磁流变减振器存在一定的时滞现象。  相似文献   

8.
基于神经网络的磁流变减振器力学模型研究   总被引:1,自引:0,他引:1  
针对磁流变效应的非线性特性导致的磁流变减振器(MRD)力学模型难以精确描述的问题,设计了一种基于神经网络的磁流变减振器力学模型.利用径向基(RBF)神经网络较强的模拟非线性函数的能力,建立了减振器力学模型,并依据减振器的测试数据信息确定了RBF神经网络各节点的数量;利用遗传算法的全局优化能力和多参数并行优化能力,辨识神经网络的参数.通过RBF神经网络力学模型计算得到的阻尼力与试验数据的相对误差的平均值为2.41%,能够满足模型的实用需求.  相似文献   

9.
基于流固耦合的核主泵汽蚀动力特性研究   总被引:1,自引:0,他引:1  
为研究在考虑流固耦合的基础上,核主泵在发生汽蚀时,汽蚀对叶片的变形及径向力的变化规律,应用数值模拟方法对核主泵在不同汽蚀工况下汽蚀对叶轮最大变形量和径向力进行数值模拟。结果表明:汽蚀发生区域中气体体积分数最大的地方对应于叶片进口的最大变形量处。在汽蚀初生工况时,叶轮最大变形主要受压力脉动的影响,在汽蚀发展工况时,汽蚀仅对叶轮最大变形的幅值产生影响,其波动幅值仍然由压力脉动占主导,汽蚀仅对径向力的位置及波动幅值产生影响。在汽蚀严重工况时,汽蚀是叶轮最大变形波动幅值的主要因素。在此汽蚀工况下,汽蚀不仅对径向力的位置及波动幅值产生影响,而且也对径向力的值也产生明显影响,故在后续设计中需要重点考虑汽蚀对径向力的影响。  相似文献   

10.
流体控制阀的流固耦合特性   总被引:1,自引:0,他引:1  
控制阀阀芯型线方程对阀前后压差有着重要的影响.基于有限元分析软件ANSYS,建立了控制阀的仿真模型,并对不同阀芯型线的模型进行了仿真分析,得出了不同阀芯型线对阀前后压降的影响.同时,在考虑流固耦合作用下对控制阀阀体进行了应力分析.通过耦合场分析,可以避免应力集中,提高阀体的使用寿命,优化设计阀体结构.  相似文献   

11.
坝体—库水相互作用的流固耦合分析   总被引:1,自引:0,他引:1  
采用Ansys中的声学流体单元模拟库水,进行了某重力坝与库水的流固耦合分析。考虑了库底吸收系数对坝库耦合系统动力响应的影响,计算结果表明:库底吸收性显著降低了动水压力,吸收系数越大,效果越明显;位移反应也有所减小。比较了Ansys与Adina的计算结果及效率,结果表明:两者的计算结果基本一致,Adina的计算效率高于Ansys,但Ansys的前后处理较Adina高效。  相似文献   

12.
设计了一种新型超磁致伸缩泵结构,结合其结构特点,建立了超磁致伸缩泵动力学仿真模型,并在MATLAB环境下进行了仿真研究。为了探索流体阻尼对超磁致伸缩泵流场分布的影响,建立了超磁致伸缩泵流场流固耦合仿真模型,并对泵腔高度、进出管位置、进出管直径以及倒角形状进行了仿真分析,得到了流场结构对泵性能的影响规律,为超磁致伸缩泵流场分析提供依据。  相似文献   

13.
支承磁悬浮轴承的径向磁流变阻尼器设计   总被引:1,自引:0,他引:1  
转子振动时其频响函数是其刚度和阻尼的函数,调节合适的刚度和阻尼,可以抑制转子振动.针对磁悬浮轴承对转子振动抑制能力差的缺点,设计了一种径向磁流变阻尼器.用这种阻尼器支承的磁悬浮轴承转子系统,通过控制磁流变阻尼器线圈中的电流来改变整个转子系统的支承刚度和阻尼,抑制转子高速时的振动.采用ANSYS对整个支承系统的电磁场进行仿真,验证及改进所设计的磁流变阻尼器.  相似文献   

14.
设计了一种磁流变液阻尼器并应用于磁悬浮轴承系统中,由于临界转速分析是转子支承系统设计中最重要的内容之一,针对基于磁流变液阻尼器的高速磁悬浮柔性转子,利用有限元法分析了不同刚度和不同阻尼分别对磁悬浮转子临界转速的影响程度,从理论上得出了磁流变液阻尼器支承刚度在104~105 N/m之间、阻尼在700 N·s/m附近时对转子临界转速影响较大的结论,分析结果有助于指导磁流变液阻尼器的设计.  相似文献   

15.
基于磁流变液的混合运动模式和双极线圈分布,从结构类型、元件材料、零件连接、工程应用等多角度考虑,设计出一种结构合理、性能优良、零部件较少并适合于加工的新型车用磁流变阻尼器.  相似文献   

16.
基于多孔介质的渗流特性和土的非线性本构关系,研究了渗流场与应力场的耦合效应;根据弹性力学和渗流理论建立流固耦合数学模型及有限元格式;利用大型有限元分析软件ABAQUS对燕山水库土石坝建立非线性耦合模型,并对其进行流固耦合分析,计算结果表明:坝体中渗流与应力的相互作用是不可忽视的,考虑耦合作佣将对土石坝的稳定性产生不利影响.  相似文献   

17.
基于流固耦合的重力坝深层抗滑稳定离散元分析   总被引:2,自引:0,他引:2  
在计算节理和断层时,基于连续介质力学的有限元法和假设岩体为刚性体的刚体极限平衡法有其内在的缺陷,在重力坝深层抗滑稳定的计算中遇到较大的困难,而离散元方法可以解决这些问题.采用离散元强度储备系数法分析了重力坝的深层抗滑稳定,其中考虑了渗流与变形的耦合效应,得到了坝体在降强前后的应力位移规律,给出了抗滑稳定安全系数和最终的破坏滑动模式.通过对关键点部位的应力及位移变化情况的记录,更清楚的了解坝体的变形情况和受力特点,而后将考虑流固耦合与不考虑耦合作用的结果进行了对比,考虑耦合的计算结果较小,其值偏于安全.最后通过与刚体极限平衡等K法计算结果进行了比较,采用流固耦合方法的计算结果与等K法结果比较接近,而其该方法物理概念明确,可以采用其方法计算重力坝深层抗滑稳定问题.  相似文献   

18.
针对采用阻尼支撑加固的房屋结构优化问题,以所有阻尼器的阻尼系数之和为目标函数,各层层间位移为约束条件,考虑非比例阻尼矩阵,编制了基于遗传算法和时程分析的阻尼支撑优化程序。并对一框架结构算例进行了分析,取得了良好的优化结果,表明了遗传算法是对阻尼支撑结构进行优化分析的一种行之有效的方法。  相似文献   

19.
基于B ingham模型描述的强磁场作用下磁流变液的流变特性,建立了圆筒式磁流变液制动器制动力矩的计算公式,并分析了制动力矩与磁场强度的关系.对圆筒式磁流变液制动器力矩分析计算结果进行讨论,结果表明,增大磁场强度可以提高磁流变液制动器的制动力矩.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号