首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model is developed for heat transfer, polymer vaporization, and gas diffusion at the interface between the advancing liquid metal and the receding foam pattern during mold filling in lost foam casting of aluminum. Most of the pattern interior decomposes by ablation, but the boundary cells decompose by a collapse mechanism, which creates an undercut in the pattern next to the coating. By regulating how much of the pattern coating is exposed to gas diffusion, the undercut controls the overall filling speed of the metal through the mold. Computed values for the foam decomposition energy from this model compare very well with experimental data on foam pyrolysis, and predicted filling speeds are consistent with observations in published experiments. In addition, the model explains several unusual observations about mold filling that until now have not been understood.  相似文献   

2.
In lost foam casting of aluminum, pressure equilibrium between the liquid metal and the decomposing foam can produce a variety of different shapes for the metal flow front, ranging from convex to concave. In extreme cases, the flow front can become so strongly concave that small pieces of the foam pattern begin to break off inside the concave hollow of the flow front and become enveloped by the advancing liquid metal. When this happens, the entire mechanism of foam decomposition changes from steady ablation to a more chaotic motion in which the metal seems to “chew” its way through the pattern, creating large bubbles of vaporizing polymer liquid in its wake. These bubbles usually lead to undesirable anomalies in the final casting. In most cases, the nonlinear equations that govern the shape of the flow front depend on a single nondimensional number, which relates the onset of the engulfing motion to specific material, geometric, and process parameters. Numerical solutions to these equations are obtained for several special cases. These solutions help to explain a number of experimental observations that until now have been poorly understood.  相似文献   

3.
In this study, a 2D model is developed for heat transfer, foam degradation and gas diffusion at the interfaces of the liquid metal, foam pattern and gaseous gap in between, for EPS lost foam casting process. In this model based on mass and energy balance between gas and molten metal, radiation and conduction between foam and molten metal and convection between gas and molten metal are considered, both metal and foam surfaces are tracked and gap volume and pressure are calculated. A combination of energy balance and geometric correlations is used to define receding foam surface during mold filling. Gas flow in the gap is considered as wedge flow and Nusselt number for a laminar incompressible wedge flow is used for it. To apply our model to an example case, SOLA-VOF algorithm was used to simulate the flow of molten metal with free boundaries. Model results are compared with some data reported in the literature which show acceptable agreement. It is found that besides radiation in the gaseous area between foam and molten metal, conduction also plays an important role in foam degradation and control of molten metal velocity. This model can acceptably predict the effect of some parameters like foam density, coating permeability and foam degradation temperature.  相似文献   

4.
Pool boiling heat transfer with porous media as the enhanced structure is attractive due to its simple geometry and easy operation. However, the available studies focus on low porous porosities. Metallic foams provide large porous porosities that have been less studied in the literature. In this paper a set of copper foam pieces were welded on the plain copper surface to form the copper foam covers for the pool boiling heat transfer enhancement. Water was used as the working fluid. Enhancement of pool boiling heat transfer compared with plain surface depends on the increased bubble nucleation sites, extended heat transfer area, and resistance for vapor release to the pool liquid. Effects of pores per inch (ppi) of foam covers, foam cover thickness, and pool liquid temperatures are examined. It is found that temperatures at the Onset of Nucleate Boiling (ONB) are significantly decreased on copper foam covers compared with on plain surfaces. Heat transfer coefficients of foam covers are two to three times of the plain surface. A large ppi value provides large bubble nucleation sites and heat transfer area to enhance heat transfer, but generates large vapor release resistance to deteriorate heat transfer. Therefore an optimal ppi value exists, which is 60 ppi in this paper. Generally small ppi value needs large foam cover thickness, and large ppi value needs small foam cover thickness, to maximally enhance heat transfer. Effect of pool liquid temperature on the heat transfer enhancement depends on the ppi value. For small ppi value such as 30 ppi, lower pool liquid temperature can dissipate higher heat flux at the same wall superheat. However, the heat transfer performance is insensitive to the pool liquid temperatures when large ppi values such as 90 ppi are used.  相似文献   

5.
This paper introduces a novel strategy on enhancing melting heat transfer for a shell-and-tube unit by partially filling porous foam. A series of filling ratios for metal foam are studied regarding thermal energy charging performance. A two-dimensional axial-symmetric model is established and verified by comparing of temperature with experimental data, obtaining satisfactory agreement between the two methods. The characteristics of the melting process such as melting fraction, temperature response and uniformity, heat storage and velocity field are analyzed in detail. The results show that the appropriate reduction of the metal foam filling ratio in the upper part can significantly promote the heat storage process due to mainly the enhanced natural convection effect. By comparing 17 cases with different filling ratios, an optimal filling ratio of 0.89 is recommended to achieve a 10.5% higher heat storage efficiency than the one with fully filled condition. The temperature uniformity first increases and then decreases with metal foam filling ratios. The best temperature uniformity is achieved for the filling ratio of 0.95. The case with a filling ratio of 0.89 possesses the shortest energy charging time at the expense of reducing the temperature uniformity. Compared with the fully filled metal foam, a better energy storage process was achieved with less metal foam material.  相似文献   

6.
Metal foam flow-fields have shown great potential in improving the uniformity of reactant distribution in polymer electrolyte fuel cells (PEFCs) by eliminating the ‘land/channel’ geometry of conventional designs. However, a detailed understanding of the water management in operational metal foam flow-field based PEFCs is limited. This study aims to provide the first clear evidence of how and where water is generated, accumulated and removed in the metal foam flow-field based PEFCs using in-operando neutron radiography, and correlate the water ‘maps’ with electrochemical performance and durability. Results show that the metal foam flow-field based PEFC has greater tolerance to dehydration at 1000 mA cm−2, exhibiting a ~50% increase in voltage, ~127% increase in total water mass and ~38% decrease in high frequency resistance (HFR) than serpentine flow-field design. Additionally, the metal foam flow-field promotes more uniform water distribution where the standard deviation of the liquid water thickness distribution across the entire cell active area is almost half that of the serpentine. These superior characteristics of metal foam flow-field result in greater than twice the maximum power density over serpentine flow-field. Results suggest that optimizing fuel cell operating condition and foam microstructure would partly mitigate flooding in the metal foam flow-field based PEFC.  相似文献   

7.
In this study, a novel way to improve performance of the air-cooled open cathode polymer electrolyte membrane fuel cell is introduced. We suggest using a metal foam in the cathode side of the planar unit fuel cell for the solution to conventional problems of the open cathode fuel cell such as excessive water evaporation from the membrane and poor transportation of air. We conduct experiment and the maximum power density of the fuel cell with metal foam increases by 25.1% compared with the conventional fuel cell without metal foam. The open cathode fuel cell with metal foam has smaller ohmic losses and concentration losses. In addition, we prove that the open cathode fuel cell with metal foam prevents excessive water evaporation and membrane drying out phenomena with numerical approach. Finally, we apply the metal foam to the air-cooled open cathode fuel cell stack as well as the planar unit cell.  相似文献   

8.
Experiments are described which attempt to incorporate the main features of a foam OTEC System. These features include foam generation, foam rise, foam breaking, and finally separation of liquid and vapor. Our foam generator formed foam at rates as high as would be desired in a commercial plant, ~1 g/cm2 sec. The rise of the foam, accompanied by a drop in temperature, was as expected by theory. The foam breaking, and the subsequent separation of liquid and vapor, presented no problem. Totally unexpected was the dominant role played by the wall drag in our 4 in diameter, 30 ft high column. Experiments were consistent, however, with a very simple expression for the variation of the drag coefficient with the foam parameters of mass flow rate and density. For the large diameter columns envisioned for commercial plants, wall drag will play only a minor role.Likewise unexpected was the large surfactant concentration (~1000 ppm) required to maintain complete foam stability to the top of the column. The periodic appearance of large bubbles at lower concentrations may be generated by our high rates of shear strain, greater than 20 sec.Another problem which must be solved is common to all open cycle systems. This is deaeration.  相似文献   

9.
The current latent heat storage (LHS) units are usually poor in energy charging and discharging efficiency. Given this, a two dimensional (2D) numerical model of the energy discharging process is presented and comprehensively analyzed to predict the role of metal foam in the solidification performance of LHS units. In the model, the fractal geometry reconstructed by the fractal Brownian motion is utilized for the pore characterization of the metal foam. The proposed model is validated through a melting experiment in copper foams from the reference. The temperature dynamic response and the solidification front evolution in metal foam are analyzed and compared to those in a corresponding cavity. The roles of the fractal dimension and porosity in the solidification behaviors are quantitatively analyzed. The results report that the presence of metal foam enhances the solidification performance. For the main goal of maximizing the latent storage, the appropriate porosity of an LHS unit is dependent on the duration time for the heat discharging process in the real application of thermal energy storage. Even if the porosity is the same, the fractal dimension also affects the solidification performance. A decrease in the fractal dimension (lower degree of disorder for pore distribution) provides greater access to heat flow through the phase change material-foam composite and thus leads to improvement in the interstitial heat transfer, which in turn accelerates the rate of heat release. The fractal dimension is expected to be less than 1.5 for superior solidification performance.  相似文献   

10.
The two equation numerical model has been applied for parallel flow double-pipe heat exchanger filled with open cell metal foams. The model fully considered solid–fluid conjugated heat transfer process coupling heat conduction and convection in open cell metal foam solid matrix, interface wall and fluid in both inner and annular space in heat exchanger. The non-Darcy effect and the wall thickness are also taken into account. The interface wall heat flux distribution along the axial direction is predicted. The numerical model is firstly verified and then the influences of solid heat conductivity, metal foam porosity, pore density, relative heat conductivity and inner tube radius of the heat exchanger on dimensionless temperature distribution and heat transfer performance of heat exchanger are numerically studied. It is revealed that the proposed numerical model can effectively display the real physical heat transfer process in the double pipe heat exchanger. It is expected to provide useful information for the design of metal foam filled heat exchanger.  相似文献   

11.
In this paper, an experimental investigation was performed to study the heat transfer performance of metal foam heat sinks of different pore densities subjected to oscillating flow under various oscillatory frequencies. The variations of pressure drop and flow velocity along the kinetic Reynolds number of oscillating flow through aluminum foams were compared. The measured pressure drops, velocities and surface temperatures of oscillating flow through aluminum 10, 20 and 40 PPI foams were presented in detail. The calculated cycle-averaged local temperature and Nusselt number for different kinetic Reynolds numbers were analyzed and compared with finned heat sinks. The results of length-averaged Nusselt number for both oscillating and steady flows indicate that higher heat transfer rates can be obtained in metal foams subjected to oscillating flow. For the purpose of designing a novel heat sink using metal foam, the characteristics of the pumping power of the cooling system for aluminum foam with different pore densities were also analyzed.  相似文献   

12.
An experimental study has been undertaken to explore the convective heat transfer enhancement that can be achieved in an impinging airflow arrangement by bonding layers of graphitic foam to a heated metal substrate. The effects of foam protrusion, foam thickness and foam properties were explored in this study. The results show that surfaces with a layer of foam protruding upward with open edges had the highest convective enhancement over that of the bare substrate under the same conditions. For the protruding cases, convective enhancements of 30-70% were observed for airflows ranging from 7-11 m/s, for foam thicknesses in the range 2-10 mm. The highest enhancements were observed for foam specimens with the most open, interconnected void structure.  相似文献   

13.
In this work, we develop a theoretical model for the spontaneous imbibition process of a non-isothermal liquid body in a capillary tube. The imbibition front is in contact with a saturated vapor originating a direct condensation at the interface. In the mathematical model, the liquid phase has been coupled with the saturated vapor through the interfacial heat flux condition. The model predicts the evolution for the imbibition front being present the phase change occurring in the imbibition front at a constant rate, which is driven by a temperature difference at the interface between the liquid and the saturated vapor. The results shown a deviation from the Lucas–Washburn solution for the imbibition front, as a function of the dimensionless parameter involved in the analysis: the Jakob number, Ja; β representing the ratio of a characteristic equilibrium height to the characteristic thermal penetration, and ε, which depends on the physical properties of the liquid that penetrates the capillary tube.  相似文献   

14.
The present study conducted a thermal analysis on a FeCrAlY foam subjected to jet impingement cooling in a horizontal channel. The temperature distribution of the metal foam is captured with infrared thermography imaging camera for different jet velocities (219.5 ≤ Pe ≤ 548.9). Two dimensional numerical studies have been conducted to obtain the temperature contour of the metal foam and compared to the thermographic images. The thermographic images show inconsistencies in temperature variation across the metal foam due to the porosity within the metal foam. The temperature contours of the metal foam obtained numerically are found to be similar to the thermographic images. The top portion of the metal foam directly impinged by the jet of low velocities shows lowest temperature, but the heat near the heated surface is transferred majorly through conduction.  相似文献   

15.
In this study, the use of metal foam as a flow distributor at cathode is evaluated numerically by a comprehensive three-dimensional solid oxide fuel cell (SOFC) model. The results show that the adoption of metal foam improves the power density by 13.74% at current density of 5000 A m−2 in comparison with conventional straight channel design. It is found that electronic overpotential, oxygen concentration and reaction rates distribute more uniformly without the restriction of ribs. The effects of cathode thickness on the two different flow distributors are compared. Compared with conventional straight channel, the metal foam is found to be more suitable as a distributor for anode supported SOFC with thin cathode gas diffusion layer. Moreover, when metal foam is applied to the fuel cell with a larger reaction area, a more uniform velocity distribution and a lower temperature distribution can be achieved. It is also found that an appropriate permeability coefficient should offer a reasonable pressure drop, which is beneficial for the fuel cell system performance improvement.  相似文献   

16.
Using a two-phase polymer electrolyte fuel cell (PEFC) model, we numerically investigated the influence of metal foam porous properties and wettability on key species and current distributions within a PEFC. Three-dimensional simulations were conducted under practical low humidity inlet hydrogen and air gases, and numerical comparisons were made for different metal foam design variables. These simulations were conducted to elucidate the detailed operating characteristics of PEFCs using metal foams as a flow distributor, and the simulation results showed that two-phase transport and the resulting flooding behavior in a PEFC are influenced by both the metal foam porous properties and the porous properties of an adjacent layer (e.g., the gas diffusion layer). This paper offers basic directions to design metal foams for optimal water management of PEFCs.  相似文献   

17.
对泡沫铜内石蜡凝固相变进行孔隙尺度实验研究。采用高分辨率相机与红外热像仪对凝固过程相场与温度场进行可视化,并通过热电偶测量石蜡与泡沫铜骨架局部温度以获得相变过程热响应及热非平衡特性。揭示了泡沫铜孔隙内凝固相变中包括固液相界面移动、液态石蜡流动及石蜡体积收缩等多个物理过程。研究表明:在多物理过程交互影响下,泡沫铜可高效扩展凝固相界面、提升样品热响应速率,采用孔隙率为0.974的泡沫铜可将石蜡凝固相变速率提升至2.8倍;泡沫铜能有效避免石蜡凝固过程由体积收缩引起的裂缝问题,消除由其引起的热阻;石蜡与泡沫铜骨架间存在局部热非平衡性,且在相变阶段尤为明显。  相似文献   

18.
《传热工程》2012,33(9):800-808
The structural characterization of chemical vapor deposition (CVD) nickel metal foam is presented in this study. Scanning electron microscope and post image processing were utilized to analyze the surface of the nickel metal foams. Measured data on foam unit cell, ligament thickness, projected pore diameter, and averaged porosity were obtained. The unit cell and projected pore diameters of CVD nickel metal foam possess Gaussian-like distribution. Characteristics of pore structure and its effect on permeability in the Darcian flow regime were analyzed. Results indicate that the permeability and the viscous conductivity of the CVD processed metal foam are highly affected by the porosity and ligament thickness.  相似文献   

19.
Two-phase modeling of gas purge in a polymer electrolyte fuel cell   总被引:1,自引:0,他引:1  
Gas purge intended to minimize residual water in a polymer electrolyte fuel cell (PEFC) is critical for successful shutdown and sub-zero startup. In the present work, we present a two-phase transient model describing water removal from PEFC under gas purge conditions. The role of back diffusion from the cathode to anode along with liquid water transport in the gas diffusion layers behind the drying front and vapor diffusion ahead of the drying front is highlighted. The underlying ineffectiveness of cathode-only purge is outlined. The model predictions are compared with experimental results under various purge conditions. A good match with experiments is obtained at higher purge temperatures whereas some differences in the HFR profile is observed at lower temperatures. The role of drying front morphology in addressing the observed differences between numerical and experimental results is hypothesized.  相似文献   

20.
Enhanced mass transport in polymer electrolyte membrane fuel cells (PEMFCs) is required for achieving high performance because concentration losses dominate cell performance. In particular, the flow field is crucial for mass transport. Recently, metal foam has been proposed as an alternative flow field owing to its three-dimensional pores, high porosity, and enhanced electrical conductivity. Here, we inspect the microstructure of various copper foams and investigate its effect as a flow field on PEMFCs. The PEMFCs with the optimized foam flow field deliver the highest performance reported to date. A large contact area and small ribs of the optimized foam flow field are advantageous for mass transfer and ohmic resistance. In addition, the internally generated pressure increases the partial pressure of the reactant, which leads to increased performance. This foam flow field has a significant potential for achieving high cell performance by enhancing the electrochemical reaction of the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号