首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural convection flows in a square cavity filled with a porous matrix has been studied numerically using penalty finite element method for uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls. Darcy–Forchheimer model is used to simulate the momentum transfer in the porous medium. The numerical procedure is adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 103  Ra  106, Darcy number Da, 10−5  Da  10−3, and Prandtl number Pr, 0.71  Pr  10) with respect to continuous and discontinuous thermal boundary conditions. Numerical results are presented in terms of stream functions, temperature profiles and Nusselt numbers. Non-uniform heating of the bottom wall produces greater heat transfer rate at the center of the bottom wall than uniform heating case for all Rayleigh numbers but average Nusselt number shows overall lower heat transfer rate for non-uniform heating case. It has been found that the heat transfer is primarily due to conduction for Da  10−5 irrespective of Ra and Pr. The conductive heat transfer regime as a function of Ra has also been reported for Da  10−4. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes the power law correlations between average Nusselt number and Rayleigh numbers are presented.  相似文献   

2.
A numerical study to investigate the steady laminar natural convection flow in a square cavity with uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls has been performed. A penalty finite element method with bi-quadratic rectangular elements has been used to solve the governing mass, momentum and energy equations. The numerical procedure adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 103  Ra  105 and Prandtl number Pr, 0.7  Pr  10) with respect to continuous and discontinuous Dirichlet boundary conditions. Non-uniform heating of the bottom wall produces greater heat transfer rates at the center of the bottom wall than the uniform heating case for all Rayleigh numbers; however, average Nusselt numbers show overall lower heat transfer rates for the non-uniform heating case. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes, power law correlations between average Nusselt number and Rayleigh numbers are presented.  相似文献   

3.
In this paper natural convection flows in a square cavity filled with a porous matrix has been investigated numerically when the bottom wall is uniformly heated and vertical wall(s) are linearly heated whereas the top wall is well insulated. Darcy–Forchheimer model without the inertia term is used to simulate the momentum transfer in the porous medium. Penalty finite element method with bi-quadratic rectangular elements is used to solve the non-dimensional governing equations. Numerical results are presented for a range of parameters (Rayleigh number Ra, 103  Ra  106, Darcy number Da, 10−5  Da  10−3, and Prandtl number Pr, 0.2  Pr  100) in terms of stream functions and isotherm contours, and local and average Nusselt numbers.  相似文献   

4.
In this paper, natural convection around a tilted heated square cylinder kept in an enclosure has been studied in the range of 103  Ra  106. Streamfunction-vorticity formulation of the Navier–Stokes equation is solved numerically using finite-difference method in non-orthogonal body-fitted coordinate system. Detailed flow and heat transfer features for two different thermal boundary conditions are reported. Effects of the enclosure geometry has been assessed using three different aspect ratio placing the square cylinder at different heights from the bottom. The concept of heatfunction has been employed to trace the path of heat transport. It is found that the uniform wall temperature heating is quantitatively different from the uniform wall heat flux heating. Flow pattern and thermal stratification are modified, if aspect ratio is varied. Overall heat transfer also changes for different aspect ratio.  相似文献   

5.
The present numerical study deals with natural convection flow in a closed square cavity when the bottom wall is uniformly heated and vertical wall(s) are linearly heated whereas the top wall is well insulated. Non-linear coupled PDEs governing the flow have been solved by penalty finite element method with bi-quadratic rectangular elements. Numerical results are obtained for various values of Rayleigh number (Ra) (103  Ra  105) and Prandtl number (Pr) (0.7  Pr  10). Results are presented in the form of streamlines, isotherm contours, local Nusselt number and the average Nusselt as a function of Rayleigh number.  相似文献   

6.
Analysis has been carried out for the energy distribution and thermal mixing in steady laminar natural convective flow through the rhombic enclosures with various inclination angles, φ for various industrial applications. Simulations are carried out for various regimes of Prandtl (Pr) and Rayleigh (Ra) numbers. Dimensionless streamfunctions and heatfunctions are used to visualize the flow and energy distribution, respectively. Multiple flow circulations are observed at Pr = 0.015 and 0.7 for all φs at Ra = 105. On the other hand, two asymmetric flow circulation cells are found to occupy the entire cavity for φ = 75° at higher Pr (Pr = 7.2 and 1000) and Ra (Ra = 105). Heatlines are found to be parallel circular arcs connecting the cold and hot walls for the conduction dominant heat transfer at Ra = 103. The enhanced convective heat transfer is explained with dense heatlines and convective loop of heatlines at Ra = 105. Heatlines clearly demonstrate that the left wall receives heat from the bottom wall as heatlines directly connect both the walls whereas the convective heat circulation cells play lead role to distribute the heat along the right wall, especially for smaller φs. On the other hand, the heat flow is evenly distributed to both side walls at higher φs via convection as well as direct conductive transport. Significant convective heat transfer from the bottom hot wall to the left cold wall occurs for φ = 30° cavity whereas the heat transfer to the right cold wall is maximum for φ = 75° irrespective of Pr. Average Nusselt number studies also show that φ = 30° cavity gives maximum heat transfer rate from the bottom to left wall irrespective of Pr in isothermal heating case. On the other hand, enhanced thermal mixing occurs at φ = 75° for both isothermal and non-isothermal heating strategies except at Pr = 0.015 in isothermal heating case.  相似文献   

7.
The effect of radiative heat transfer on the hydromagnetic double-diffusive convection in two-dimensional rectangular enclosure is studied numerically for fixed Prandtl, Rayleigh, and Lewis numbers, Pr = 13.6, Ra = 105, Le = 2. Uniform temperatures and concentrations are imposed along the vertical walls while the horizontal walls are assumed to be adiabatic and impermeable to mass transfer. The influences of the optical thickness and scattering albedo of the semitransparent fluid on heat and mass transfer with and without magnetic damping are depicted. When progressively varying the optical thickness, multiple solutions are obtained which are steady or oscillatory accordingly to the initial conditions. the mechanisms of the transitions between steady compositionally dominated flow and unsteady thermally dominated flow are analyzed.  相似文献   

8.
The phenomena of natural convection in an inclined square enclosure heated via corner heater have been studied numerically. Finite difference method is used for solving momentum and energy equations in the form of stream function–vorticity. One wall of the enclosure is isothermal but its temperature is colder than that of heaters while the remaining walls are adiabatic. The numerical procedure adopted in this analysis yields consistent performance over a wide range of parameters; Rayleigh number, Ra (103 ? Ra ? 106); Prandtl number, Pr (0.07 ? Pr ? 70); dimensionless lengths of heater in x and y directions (0.25 ? hx ? 0.75, 0.25 ? hy ? 0.75); and inclination angle, ? (0° ? ? ? 270°). It is observed that heat transfer is maximum or minimum depending on the inclination angle and depending on the length of the corner heaters. The effect of Prandtl number on mean Nusselt number is more significant for Pr < 1.  相似文献   

9.
Natural convection in isosceles triangular enclosures with various configurations (case 1 — inverted, case 2 — straight and case 3 — tilted) is studied via heatline analysis for linear heating of inclined walls. Detailed analysis and comparison for various base angles (φ = 45°, 60°) of triangular enclosures have been carried out for a range of fluids (Pr = 0.015  1000) within Ra = 103  105 using Galerkin finite element method. The heat flow distributions indicate conduction dominant heat transfer at low Ra (Ra = 103) for case 1 and case 2 whereas in case 3, convective heat flow is observed due to high buoyancy force. As Ra increases, enhanced thermal mixing is observed at the core of the cavity. Wall to wall heat transfer occurs at walls AB and AC due to linear heating boundary condition in all the cases. Although the distributions of fluid flow and heat flow are qualitatively similar for φ = 45° and 60°, the intensity of fluid flow and heat flow decreases as φ increases. Strength of fluid flow and heat flow circulation cells is found to be higher in case 3 for identical parameters. Results show that upper side wall (AC) for case 3 exhibits higher heat transfer rates whereas heat transfer rates for walls AB and AC are the same for case 1 and case 2. Also NuAB is higher for case 2 followed by case 1 and case 3 at the middle portion of wall AB. Thus to achieve high heat transfer from fluid to wall at the central region, case 2 and case 3 configurations may be recommended at high Ra (Ra = 105) and Pr, irrespective of φ.  相似文献   

10.
This article analyzes the detailed heat transfer phenomena during natural convection within tilted square cavities with isothermally cooled walls (BC and DA) and hot wall AB is parallel to the insulated wall CD. A penalty finite element analysis with bi-quadratic elements has been used to investigate the results in terms of streamlines, isotherms and heatlines. The present numerical procedure is performed over a wide range of parameters (103 ? Ra ? 105,0.015 ? Pr ? 1000,0° ? φ ? 90°). Secondary circulations cells are observed near corner regions of cavity for all φ’s at Pr = 0.015 with Ra = 105. Two asymmetric flow circulation cells are found to occupy the entire cavity for φ = 15° at Pr = 0.7 and Pr = 1000 with Ra = 105. Heatlines indicate that the cavity with inclination angle φ = 15° corresponds to large convective heat transfer from the wall AB to wall DA whereas the heat transfer to wall BC is maximum for φ = 75°. Heat transfer rates along the walls are obtained in terms of local and average Nusselt numbers and they are explained based on gradients of heatfunctions. Average Nusselt number distributions show that heat transfer rate along wall DA is larger for lower inclination angle (φ = 15°) whereas maximum heat transfer rate along wall BC occur for higher inclination angle (φ = 75°).  相似文献   

11.
Experimental measurements and numerical simulations of natural convection in a cubical cavity heated from below and cooled from above are reported at turbulent Rayleigh numbers using water as a convective fluid (Pr = 6.0). Direct numerical simulations were carried out considering the Boussinesq approximation with a second-order finite volume code (107  Ra  108). The particle image velocimetry technique was used to measure the velocity field at Ra = 107, Ra = 7 × 107 and Ra = 108 and there was general agreement between the predicted time averaged local velocities and those experimentally measured if the heat conduction through the sidewalls was considered in the simulations.  相似文献   

12.
The present paper documents the geometric optimization of L and C-shaped channels in laminar natural convection subject to global constraints. The objective is to maximize the heat transfer rate from the hot wall to the coolant fluid. Three different configurations were considered: (i) an L-shaped asymmetric vertical heated channel with an adiabatic horizontal inlet, (ii) an asymmetric vertical heated channel with an adiabatic vertical outlet, and finally, (iii) a C-shaped vertical channel with horizontal inlet and outlet. The two first configurations are free to morph according to two degrees of freedom: the wall-to-wall spacing and inlet (or outlet) height. The third configuration is optimized with respect to the wall-to-wall spacing, and the heights of the inlet and outlet ports. The effect of the inlet or outlet horizontal adiabatic duct lengths is also investigated. The optimization is performed numerically by using the finite element technique, in the range 105 < Ra < 107 for Pr = 0.7, where Ra is the Rayleigh number based on a fixed total height H of the channel. The numerical results show that optimization is relevant, since the three degrees of freedom considered have a strong effect on the heat transfer delivered from the hot wall to the fluid. The optimal geometric characteristics obtained numerically (i.e., optimal spacing, optimal height and lengths) are reported and correlated within a 7.5% maximal disagreement range.  相似文献   

13.
Heat transfer enhancement utilizing nanofluids in a two-dimensional enclosure is investigated for various pertinent parameters. The Khanafer's model is used to analyze heat transfer performance of nanofluids inside an enclosure taking into account the solid particle dispersion. Transport equations are model by a stream function-vorticity formulation and are solved numerically by finite-difference approach. Based upon the numerical predictions, the effects of Rayleigh number (Ra) and aspect ratio (AR) on the flow pattern and energy transport within the thermal boundary layer are presented. The diameter of the nanoparticle dp is taken as 10 nm in nanofluids. The buoyancy parameter is 103  Ra  106 and aspect ratios (AR) of two-dimensional enclosure are 1/2, 1, 2. Results show that increasing the buoyancy parameter and volume fraction of nanofluids cause an increase in the average heat transfer coefficient. Finally, the empirical equation was built between average Nusselt number and volume fraction.  相似文献   

14.
The present paper investigates the numerical simulation of steady laminar incompressible natural convection heat transfer in an enclosed cavity that is filled with a fluid-saturated porous medium. The bottom wall is subjected to a relatively higher temperature than the top wall while the vertical walls are considered to be insulated. The flow field is modeled upon incorporating different non-Darcian effects, such as the convective term, Brinkman effect and Forchhiemer quadratic inertial effect. Moreover the two-equation model is used to separately account for the local fluid and solid temperatures. The numerical solution is obtained through the application of the finite volume method. The appraisals of the sought objectives are performed upon identifying key dimensionless groups of parameters. These dimensionless groups along with their operating domains are: Rayleigh number 1  Ra  400, Darcy number 10−4  Da  10−3, effective fluid-to-solid thermal conductivity ratio 0.1  κ  1.0, and the modified Biot number 1  χ  100. The non-Darcian effects are first examined over a broad range of Rayleigh number. Next, the implications of the group of parameters on the flow circulation intensity, local thermal non-equilibrium (LTNE) and average Nusselt number are highlighted and pertinent observations are documented.  相似文献   

15.
Natural convection heat transfer from a heated thin plate located in the middle of a lid-driven inclined square enclosure has been analyzed numerically. Left and right of the cavity are adiabatic, the two horizontal walls have constant temperature lower than the plate’s temperature. The study is formulated in terms of the vorticity-stream function procedure and numerical solution was performed using a fully higher-order compact (FHOC) finite difference scheme on the 9-point 2D stencil. Air was chosen as a working fluid (Pr = 0.71). Two cases are considered depending on the position of heated thin plate (Case I, horizontal position; Case II, vertical position). Governing parameters, which are effective on flow field and temperature distribution, are Rayleigh number values (Ra) ranging from 103 to 105 and inclination angles γ (0° ? γ < 360°). The fluid flow, heat transfer and heat transport characteristics were illustrated by streamlines, isotherms and Nusselt number (Nu). It is found that fluid flow and temperature fields strongly depend on Rayleigh numbers and inclination angles. Further, for the vertical located position of thin plate heat transfer becomes more enhanced with lower γ at various Rayleigh numbers.  相似文献   

16.
Natural convection heat transfer in a porous media filled and non-isothermally heated from the bottom wall of triangular enclosure is analyzed using finite difference technique. Darcy law was used to write equations of porous media. Dimensionless heatfunction was used to visualize the heat transport due to buoyancy forces. Three different boundary conditions were applied for the vertical and inclined boundaries of triangular enclosures as Case I; both vertical and inclined walls were isothermal, Case II; vertical wall was adiabatic and inclined one was isothermal, Case III; vertical wall is isothermal and inclined one is adiabatic. A cosine function was utilized to get non-isothermal wall condition. The study was performed for different aspect ratios (0.25 ? AR ? 1.0) and Darcy-modified Rayleigh numbers (100 ? Ra ? 1000). It was observed that heat transfer enhancement was formed when vertical and inclined walls were isothermal while bottom wall was at non-uniform temperature. Heat transfer from bottom wall did not vary when the value of aspect ratio was higher than 0.50. In addition, heatline visualization technique was a useful technique for non-isothermally heated and porous media filled triangular enclosures.  相似文献   

17.
A steady buoyancy-driven flow of air in a partially open square 2D cavity with internal heat source, adiabatic bottom and top walls, and vertical walls maintained at different constant temperatures is investigated numerically in this work. A heat source with 1% of the cavity volume is present in the center of the bottom wall. The cold right wall contains a partial opening occupying 25%, 50% or 75% of the wall. The influence of the temperature gradient between the verticals walls was analyzed for Rae = 103–105, while the influence of the heat source was evaluated through the relation R = Rai/Rae, investigated at between 400 and 2000. Interesting results were obtained. For a low Rayleigh number, it is found that the isotherm plots are smooth and follow a parabolic shape indicating the dominance of the heat source. But as the Rae increases, the flow slowly becomes dominated by the temperature difference between the walls. It is also observed that multiple strong secondary circulations are formed for fluids with a small Rae whereas these features are absent at higher Rae. The comprehensive analysis is concluded with horizontal air velocity and temperature plots for the opening. The numerical results show a significant influence of the opening on the heat transfer in the cavity.  相似文献   

18.
In this study numerical predictions of local and global entropy generation rates in natural convection in air in a vertical channel symmetrically heated at uniform heat flux are reported. Results of entropy generation analysis are obtained by solving the entropy generation equation based on the velocity and temperature data. The analyzed regime is two-dimensional, laminar and steady state. The numerical procedure expands an existing computer code on natural convection in vertical channels. Results in terms of fields and profiles of local entropy generation, for various Rayleigh number, Ra, and aspect ratio values, L/b, are given. The distributions of local values show different behaviours for the different Ra values. A correlation between global entropy generation rates, Rayleigh number and aspect ratio is proposed in the ranges 103  Ra  106 and 5  L/b  20.  相似文献   

19.
Two-dimensional steady-state numerical simulations have been conducted for laminar Rayleigh-Bénard convection of Bingham fluids in rectangular enclosures to analyse the critical Rayleigh number Racrit for which convection ceases to influence the thermal transport and thermal conduction becomes the principal heat transfer mechanism. The influences of Bingham number Bn on the critical Rayleigh number Racrit have been investigated for different values of aspect ratio (height: length) AR (ranging from 1/4 to 4) and nominal Prandtl number Pr (ranging from 10 to 500) for both constant wall temperature (CWT) and constant wall heat flux (CWHF) boundary conditions for the horizontal walls. It has been found that Racrit increases with increasing values of Bn and AR, regardless of the boundary condition. The values of Racrit have been found to be greater in the case of CWT boundary condition than in the CWHF configuration for AR  1, whereas an opposite trend is obtained for AR > 1 for Bingham fluids. Additionally, Racrit has been found be insensitive to the change of Pr for Newtonian fluids (i.e. Bn = 0), whereas Racrit increases with increasing Pr for Bingham fluids irrespective of the boundary condition. A detailed scaling analysis has also been performed to elucidate the effects of Bn ,Pr , AR on Racrit for Bingham fluids. The results of scaling analysis and numerical findings have been utilised to propose a new correlation for Racrit for both Newtonian and Bingham fluids in the case of both CWT and CWHF boundary conditions.  相似文献   

20.
《Applied Thermal Engineering》2007,27(8-9):1585-1592
Natural convection of air in a cubical enclosure with a thick partition fitted vertically on the hot wall is numerically investigated for Rayleigh numbers of 103–106. A three dimensional convective circulation is generated, in which the cold flow sweeps the fin faces and the hot wall, with low flow blockage. The combined contributions of these faces cause heat transfer enhancements over 40% at high Rayleigh numbers and thermal conductivity ratios (Rk). These enhancements significantly exceed the ones obtained with horizontal fins. Even low Rk values cause heat transfer enhancements, except at Ra = 104.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号