首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Nano-Ce1?xZrxO2 (x = 0.15, 0.25, 0.5) were synthesized via co-precipitation using NH4OH as precipitant and hydrothermal crystallization. The XRD results confirmed that the cubic fluorite nano-Ce1?xZrxO2 can form in NH4OH solution (pH > 10) at 150 °C for 12 h, and well crystallized 20–50 nm nano-Ce1?xZrxO2 were obtained at 200 °C for 22 h. The crystal growth of Ce1?xZrxO2 was suppressed under higher OH? concentration and crystallite size decreased with increasing concentration of NH4OH. Ce3d XP spectra showed that the main valence state of the cerium on Ce1?xZrxO2 surface is +4, and substituting Ce4+ with Zr4+ has no obvious influence on Ce3+/Ce4+ ratio.  相似文献   

2.
In this paper, we have synthesized cobalt aluminate (CoAl2O4), nanopowders as blue pigments by the combustion method, which metal nitrates were used as precursor materials and mixture of urea and glycine as fuel. The effect of β-alanine weight percentage as a novel excess fuel on some physical characteristics (e.g. crystallite size and color) of powders has been investigated. The synthesized powders were characterized by means of X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscope (TEM), Fourier transform infrared (FT-IR) and Ultraviolet–visible (UV–Vis) spectroscopies. XRD patterns and FT-IR spectra confirmed the formation of pure nanocrystalline CoAl2O4 powders after calcination of the metal-fuel gel precursors at 600 °C for 2 h. Optical band gap of 2.3 eV observed for the prepared powders. The crystallite sizes were estimated of 20–30 nm by means of TEM images and Williamson–Hall method. UV–Vis spectra of the blue metal oxides were characteristics of Co2+ metal ions located in tetrahedral sites. CIE L1a1b1 chromatic coordinates indicated that the bluest color was obtained for β-alanine = 5.5 and 35.6 wt.%.  相似文献   

3.
MgAl2O4 was successfully used as crystalline host network for the synthesis of cobalt-based blue ceramic pigments. Different compositions of Mg1?xCoxAl2O4 (x = 0.1–0.3) powders have been prepared by the combustion reaction of corresponding metal nitrates with mixtures of urea and β-alanine. The resultant powders were characterized by means of XRD, TG-DTA, EDAX, SEM, BET surface area, diffuse reflectance spectrometry and CIEL1a1b1 color measurement. For x = 0.2, thermal analysis investigations evidenced that combustion reaction occurs at 276 °C. XRD analysis certified the formation of the designed solid solution, no additional thermal treatment being required. EDAX elemental analysis confirmed the purity of the as-prepared compound. The resulted powders had large surface areas, which varied from 8.7 to 62.6 m2/g. The crystallite size of Mg1?xCoxAl2O4 powders was less than 15 nm. Experimental results evidenced that as the proportion of Co2+ increased, the crystallite size decreased and the specific surface area increased. The diffuse reflectance spectra of the Mg1?xCoxAl2O4 pigments confirmed the presence of tetrahedrally coordinated Co2+. CIEL1a1b1 chromatic coordinates indicated that the bluest color was obtained for x = 0.2.  相似文献   

4.
《Materials Letters》2005,59(14-15):1902-1906
Nanocrystalline hydroxyapatite was prepared by a precipitation method with the aid of ultrasonic irradiation using Ca(NO3)2 and NH4H2PO4 as source material and carbamide (NH2CONH2) as precipitator. The influence of Ca/P molar ratio, precipitation temperature, concentration of Ca2+ ([Ca2+]) and ultrasonic power on the crystallinity of the nanopowder were systematically investigated by XRD analysis. The size of the as-prepared particles was analyzed using TEM and XRD methods. The results revealed that the monophase hydroxyapatite could be obtained at the following technological conditions: [Ca2+] = 0.01–0.1 mol/L, ultrasonic power = 300 W, Ca/P (mol) = 1.2–2.5 and T = 313–353 K. In addition, the acicular and spherical particles could be prepared at different ultrasonic powers of 300 and 200 W, respectively.  相似文献   

5.
Nano-spinel nickel ferrites doped with Co–Cr at iron and nickel sites are synthesized by the chemical co-precipitation method and are characterized by the XRD, DC electrical resistivity and hysteresis loops measurements. The XRD analyses confirm the formation of single spinel phase and the crystallite size calculated by Scherer's formula is found in the range of 17–19 nm. This crystallite size is small enough to obtain the suitable signal to noise ratio in the high density recording media. The values of electrical resistivity (8.28 × 107 to 29.6 × 107 ohm cm), activation energy (0.545–0.884 eV), saturation magnetization (23.67–33.49 emu g?1) and remanence (12.48–18.67 emu g?1) are increased up to a doping level of x = 0.2 and then starts to decrease. The increase in electrical resistivity, saturation magnetization and remanence suggest that the material with composition Co0.2Ni0.8Fe1.8O4 can be used for applications in microwave devices and high density recording media.  相似文献   

6.
The effect of variation of composition on the structural, morphological, magnetic and electric properties of Mg1?xNixCrxFe2?xO4 (x = 0.0–0.5) nanocrystallites is presented. The samples were prepared by novel polyethylene glycol (PEG) assisted microemulsion method with average crystallite size of 15–47 nm. The microstructure, chemical, and phase analyses of the samples were studied by the scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray fluorescence (ED-XRF), and X-ray diffraction (XRD). Compositional variation greatly affected the magnetic and structural properties. The high-field regimes of the magnetic loops are modelled using the Law of Approach (LOA) to saturation in order to extract information about their anisotropy and the saturation magnetization. Thermal demagnetization measurements are carried out using VSM and significant enhancement of the Curie temperature from 681 K to 832 K has been achieved by substitution of different contents of Ni–Cr. The dc-electrical resistivity (ρRT) at potential operational range around 300 K is increased from 7.5 × 108 to 4.85 × 109 Ωcm with the increase in Ni–Cr contents. Moreover, the results of the present study provide sufficient evidence to show that the electric and magnetic properties of Mg-ferrite have been improved significantly by substituting low contents of Ni–Cr.  相似文献   

7.
The influence of polymer modifier chain length on the thermal conductivity of polyamide 6/graphene (GA) nanocomposites, including through-plane (λz) and in-plane (λx) directions were investigated. Here, three chain lengths of double amino-terminated polyethylene glycol (NH2–PEG–NH2) were used to covalently functionalize graphene with graphene content of 5.0 wt%. Results showed that λz was enhanced with the chain length of NH2–PEG–NH2 increased, but λx reached a maximum value at a certain chain length of NH2–PEG–NH2. The maximum λz and λx of GA are 0.406 W m−1 K−1 and 9.710 W m−1 K−1, respectively. This study serves as a foundation for further research on the thermal conductive property of graphene nanocomposites using different chain lengths of polymer modifier to improve the λz and λx of the thermal conductive materials.  相似文献   

8.
This paper reports the influence of doping degree and annealing temperature on XRD, Raman, EPR and PL spectra of Sn1xVxO2 nanoparticles with x = 0, 0.01 and 0.05 annealed at 600 and 800 °C. XRD studies reveal a tetragonal rutile crystalline phases of tin oxide, while the formation of V2O5 secondary phase was evidenced for all doped nanoparticles only by Raman scattering. In function of the doping degree and annealing temperature, from EPR spectroscopy was evidenced the presence of three different positions for V4+ ions in the samples: isolated ions disposed on the nanoparticles surface, ions which are coupled by dipolar or exchange interactions and cluster ions. The luminescence emissions associated with oxygen vacancies and structural defects are influenced by doping degree and annealing temperature and could be correlated with the crystallite size determined from XRD patterns.  相似文献   

9.
BaTi2O5 thin films were prepared on MgO (1 0 0) substrates by pulsed laser deposition. The effect of substrate temperature (Tsub) on the structural and optical properties of the films, such as crystal phase, preferred orientation, crystallinity, surface morphology, optical transmittance and bandgap energy, was investigated. The preferred orientation of the films changed form (7 1 0) to (0 2 0) depending on Tsub, and the b-axis oriented BaTi2O5 thin film could be obtained at Tsub = 973–1023 K. The surface morphology of the films was different with changing Tsub, which showed a dense surface with an elongated granular texture at Tsub = 973–1023 K. The crystallinity and surface roughness increased at the elevated substrate temperatures. The as-deposited BaTi2O5 thin films were highly transparent with an optical transmittance of ~70%. The bandgap energy was found to decrease with increasing substrate temperature, from 3.76 eV for Tsub = 923 K to 3.56 eV for Tsub = 1023 K.  相似文献   

10.
《Optical Materials》2011,33(12):1606-1611
Red emitting Y2O3:Eu3+ (5 and 10 at.%) submicronic particles were synthesized through ultrasonic spray pyrolysis method from the pure nitrate solutions at 900 °C. The employed synthesis conditions (gradual increase of temperature within triple zone reactor and extended residence time) assured formation of spherical, dense, non-agglomerated particles that are nanostructured (crystallite size ∼20 nm). The as-prepared powders were additionally thermally treated at temperatures up to 1200 °C. A bcc Ia-3 cubic phase presence and exceptional powder morphological features were maintained with heating and are followed with particle structural changes (crystallite growth up to 130 nm). Emission spectra were studied after excitation with 393 nm wavelength and together with the decay lifetimes for Eu3+ ion 5D0 and 5D1 levels revealed the effect of powder nanocrystalline nature on its luminescent properties. The emission spectra showed typical Eu3+ 5D0  7Fi (i = 0, 1, 2, 3, 4) transitions with dominant red emission at 611 nm, while the lifetime measurements revealed the quenching effect with the rise of dopant concentration and its more consistent distribution into host lattice due to the thermal treatment.  相似文献   

11.
This investigation aims to produce TiC–Al2O3 nanocomposite by reducing rutile with aluminum and graphite powder via a mechanochemical process. The effect of milling time on this process was investigated. The characterization of phase formation was carried out by XRD and SEM. Results showed that after a 10 h milling, the combustion reaction between Al, TiO2 and C was started and promoted by a self-propagation high temperature synthesis. Extending the milling time to 20 h, the reaction was completed. The XRD study illustrated after a 20 h milling, the width of TiC and Al2O3 peaks increased while the crystallite sizes of these phases decreased to less than 28 nm. After annealing at 800 °C for 1 h in a tube furnace, TiC and Al2O3 crystallite sizes remained constant. However, raising the annealing temperature to 1200 °C caused TiC and Al2O3 crystallite size to increase to 49 nm and 63 nm, respectively. No new phase was detected after the heat treatment of the synthesised TiC–Al2O3 nanocomposite.  相似文献   

12.
《Materials Letters》2007,61(11-12):2451-2453
The RuSr2GdCu2O8  δ (Ru-1212) superconductors have been prepared through the sol–gel route. We found that 1030 °C is the optimum annealing temperature for the formation of the Ru-1212 superconductors synthesized by the sol–gel route. X-ray powder diffraction analysis indicates that nearly all the peaks from the samples can be indexed to a single phase of Ru-1212, tetragonal symmetry with lattice parameters a = b = 3.382 Å, c = 11.478 Å and space group I4/mmm. The RuSr2GdCu2O8  δ superconductors prepared by the sol–gel method exhibit onset transition temperature Tc-onset near 55 K and zero resistance temperature Tc-zero at 45 K.  相似文献   

13.
The crystal structure of the ordered fluorite, Pr3RuO7, was refined from powder neutron diffraction data in Cmcm. An interesting structural feature is the presence of relatively well separated zig-zag chains of corner sharing RuO6 octahedra, Ru–Ru interchain distance 6.61 Å vs. Ru–Ru intrachain distance of 3.76 Å. Magnetic susceptibility data show a Curie–Weiss behavior for T>225 K with C=5.96(4) emu K mol−1 and θc=+11(2) K. In an attempt to separate the contributions of Pr(3+) and Ru(5+), the properties of isostructural Pr3TaO7 were also measured, yielding C=4.63(3) emu K mol−1. Thus, the contribution of Ru(5+), 4d3, S=3/2, to the measured Curie constant is estimated to be 1.33 emu K mol−1, not far from the spin-only value of 1.87 emu K mol−1. This supports the view that the Ru 4d electrons are localized and magnetic, not itinerant. A susceptibility maximum at about 50 K is attributed to long-range magnetic order and this is substantiated by neutron diffraction data. There is little evidence for one-dimensional antiferromagnetic correlations in this material but behavior characteristic of short-range ferromagnetic correlations attributed to Pr–Ru exchange interactions are found in the temperature range 50–200 K, consistent with the positive θc.  相似文献   

14.
The oxynitridation of biomedical titanium metal under a precisely regulated oxygen partial pressure (PO2) of 10? 14 Pa in nitrogen atmosphere at 973 K for 1 h strongly enhanced apatite formation compared with that on Ti heated in air. The factors governing the high apatite-forming ability are discussed from the viewpoint of the surface properties of Ti heated under a PO2 of 10? 14 Pa in nitrogen atmosphere determined from X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. Nitrogen (N)-doped TiO2 (interstitial N) was formed on pure Ti heated under a PO2 of 10? 14 Pa in nitrogen atmosphere at 973 K. The XPS O1s main peak shifted toward a lower binding energy upon heating under a PO2 of 10? 14 Pa. This shift may be due to the formation of oxygen vacancies. This Ti surface had a positive zeta potential of approximately 20 mV. According to time-of-flight secondary ion mass spectroscopy results, PO43 ? ions were predominantly adsorbed on Ti soaked in simulated body fluid (SBF) after heat treatment, followed by calcium ions. It was concluded that the apatite formation kinetics can be described using the Avrami–Erofeev equation with an Avrami index of n = 2, which implies the instantaneous nucleation of apatite on the surface of Ti soaked in SBF after heat treatment at 973 K under a PO2 of 10? 14 Pa.  相似文献   

15.
Nanocrystalline Zn1?xMnxO films (x = 0, 0.05, 0.1, 0.15, and 0.2) were deposited onto corning glass substrates by a non-vacuum sol–gel spin coating method. All of the films were annealed at 450 °C for 2 h. The structural, optical and magneto-transport properties were investigated by X-ray diffraction, spectroscopic ellipsometry and a system for the measurement of the physical properties. X-ray diffraction analysis of the films reveals that the Mn-doped ZnO films crystallize in the form of a hexagonal wurtzite-type structure with a crystallite size decreases with an increase of the Mn concentration. It was also found that the microstrain increases with the increase of the Mn content. Evidence of nanocrystalline nature of the films was observed from the investigation of surface morphology using transmission, scanning electron microscopy and atomic force microscopy. The optical constants and film thicknesses of nanocrystalline Zn1?xMnxO films were obtained by fitting the spectroscopic ellipsometric data (ψ and Δ) using a three-layer model system in the wavelength range from 300 to 1200 nm. The refractive index was observed to increase with increasing Mn concentration. This increase in the refractive index with increasing Mn content may be attributed to the increase in the polarizability due to the large ionic radius of Mn2+ compared to the ionic radius of Zn2+. The optical band gap of the nanocrystalline Mn–ZnO films was determined by an analysis of the absorption coefficient. The direct transition of the series of films was observed to have energies increasing linearly from 3.17 eV (x = 0) to 3.55 eV (x = 0.2). Magnetoresistance (MR) was measured from 5 K to 300 K in a magnetic field of up to 6 T. Low-field positive MR and high-field negative MR were detected in Mn-doped ZnO at 5 K. Only negative MR was observed for temperatures above 200 K. The positive MR in Mn-doped ZnO films was observed to decrease drastically when the temperature increased from 5 K to 100 K. The isothermal MR of Zn1?xMnxO films with different Mn concentrations at 5 K reveals that the increase of the Mn content induces a giant positive MR above x = 0.05 and reaches up to 55% at an applied field of 30 kOe for x = 0.2.  相似文献   

16.
CaAl2yO4:yMn4+ (y = 0–1.6 mol%) phosphors are synthesized by a solid-state reaction method in air, and their crystal structure and luminescence property are investigated. To compare luminescence property, CaAl3.99O7:1%Mn4+ and SrAl1.99O4:1%Mn4+ phosphors are also synthesized at the same condition. Broad band excitation spectra are observed within the range 220–550 nm, and emission spectra cover from 600 to 720 nm with the strongest emission peak at ∼658 nm owing to the 2E  4A2 transition of Mn4+ ion. The influence of crystal field to luminous intensity is discussed, and the possible luminous mechanism of Mn4+ ion is explained by using energy level diagram of Mn4+ ion. CaAl1.99O4:1%Mn4+, CaAl3.99O7:1%Mn4+, and SrAl1.99O4:1%Mn4+ phosphors under excitation 325 nm light emit red light, and their CIE chromaticity coordinates are (0.7181, 0.2813), (0.7182, 0.2818), and (0.7198, 0.2801), respectively. These contents in the paper are helpful to develop novel and high-efficient Mn4+-doped phosphor for white LEDs.  相似文献   

17.
In order to accurately predict the types of biogenic iron hydroxysulfate precipitates in acidic, sulfate-rich environments facilitated by Acidithiobacillus ferrooxidans, different initial concentrations of Fe2 +, K+, Na+, and NH4+ are selected and tested in batch experiments for the formation of the precipitates. The critical equations of jarosite formation in FeSO4–K2SO4–H2O system or FeSO4–(NH4)2SO4–H2O system could be described as Y = ? 22120.8077 ? 0.04257x + 0.006170x2 (R2 = 0.9979) or Y = 0.03540 ? 0.002950x + 7.407E ? 5x2 (R2 = 0.9934), respectively, where Y is the threshold or critical values of the molar ratio of Fe/K or Fe/NH4 for jarosite formation, and x (mmol/L) is the initial concentration of Fe(II). Schwertmannite is the sole biogenic secondary ferric mineral when molar ratio of Fe/K or Fe/NH4 is higher than Y in the system with a given initial Fe(II) concentration. The precipitates are an admixture of schwertmannite and jarosite, or pure jarosite when the Fe/M molar ratio is lower than Y. The crystallinity of the secondary ferric minerals increased with the increase of initial Fe(II) concentration in the medium with a fixed K+ concentration. It is observed that the capacity of monovalent cation in promoting jarosite formation is K+ > NH4+ > Na+, as exhibiting that the capacity of K+ in this process is about 75 and 200 times greater than NH4+ and Na+, respectively. Obviously, both the initial concentration of Fe(II) and molar ratio of Fe to monovalent cation determine the types of biogenic iron hydroxysulfate precipitates.  相似文献   

18.
Polycrystalline samples of BaV13O18 and SrV13O18 were prepared by solid-state reaction of BaCO3, SrCO3, V2O5 and V at 1773–2073 K in flowing Ar. The crystal structures of BaV13O18 (R-3, ah=12.6293(10) Å, ch=7.0121(4) Å) and SrV13O18 (ah=12.5491(7) Å, ch=6.9878(3) Å) were refined by the Rietveld method using X-ray diffraction data. BaV13O18 exhibited semiconducting behavior with electrical resistivity from 5.8×10−3 to 2.7×10−3 Ω cm at 100–300 K. Electrical resistivity of SrV13O18 ranged from 1.5×10−3 to 1.8×10−3 Ω cm, and it increased slightly up to around 250 K and decreased above 250 K with increasing temperature. Negative Seebeck coefficients of both compounds at 100–300 K indicated that electron was the dominant carrier. BaV13O18 and SrV13O18 showed paramagnetism with the effective magnetic moment of 0.11μB and 0.15μB, respectively, at 10–100 K.  相似文献   

19.
《Materials Research Bulletin》2006,41(12):2260-2267
Ce1−xGdxO2−1/2x nanopowder were successfully synthesized by microwave-induced combustion process. For the preparation, cerium nitrate, gadolinium nitrate hexahydrate, and urea were used for the microwave-induced combustion process. The process took only 30 min to obtain Ce1−xGdxO2−1/2x powders. The exo-endo temperature, phase identification, and morphology of resultant powders were investigated by TG/DTA, XRD, and SEM. The as-received Ce1−xGdxO2−1/2x powders showed that the average particle size ranged from 18 to 50 nm, crystallite dimension varied from 11 to 20 nm, and the specific surface area was distribution from 16 to 46 m2/g. As for Ce1−xGdxO2−1/2x ceramics sintered at 1450 °C for 3 h, the bulk density of Ce1−xGdxO2−1/2x ceramics were over 91% of the theoretical density, the maximum electrical conductivity, σ700 °C = 0.017 S/cm with minimum activation energy, Ea = 0.869 eV was found at Ce0.80Gd0.20O1.90 ceramic.  相似文献   

20.
《Advanced Powder Technology》2014,25(4):1388-1393
Nanocrystalline Zn2P2O7:Sm3+ was synthesized using citrate precursor route. Rietveld refined XRD shown the formation of pure phase at 900 °C. Based on scanning electron microscopy, size distribution of the pyrophosphate particle was found to be in the range of 50–100 nm. Upon near UV light excitation (403 nm), Zn2P2O7:Sm3+exhibits host emission at 450 nm along with characteristic emission lines of Sm3+. Based on PL decay measurement, it was inferred that two different types of Sm3+ ions were present in the zinc pyrophosphate. The first type was a short lived species (∼τ = 100 μs) present at less symmetric ‘5-coordinated Zn’ sites, while the second was a long lived species (∼τ = 1.9 ms) present at symmetric ‘6-coordinated Zn’ sites. The color coordinates of the system were evaluated using CIE index diagram to be 0.36 and 0.37, which suggest that the prepared material is a potential near white light emitting phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号