首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents the temperature–entropy analysis, where the Thomson effect bridges the Joule heat and the Fourier heat across the thermoelectric elements of a thermoelectric cooling cycle to describe the principal energy flows and performance bottlenecks or dissipations. Starting from the principles of thermodynamics of thermoelectricity, differential governing equations describing the energy and entropy flows of the thermoelectric element are discussed. The temperature–entropy (TS) profile in a single Peltier element is pictured for temperature dependent Seebeck coefficient and illustrated with data from commercial available thermoelectric cooler.  相似文献   

2.
This study conducts experimental investigation and numerical analysis for one-stage thermoelectric cooler (TEC) considering Thomson effect. Three Seebeck coefficient models are applied to numerically and experimentally study the Thomson effect on TEC. Results show that higher current, higher hot side temperature, or lower heat load can increase the temperature difference between the cold and hot sides. Opposite trends are found for COP. Specific current should be chosen as the upper threshold in thermoelectric cooler design. The cooling performance can improve when the Thomson heat maintains positive.  相似文献   

3.
This paper focus on the effects of Mach number on thermoelectric energy conversion for the limitation of aero-heating and the feasibility of energy harvesting on supersonic vehicles. A model of nose-tip structure constructed with SiC ceramics is developed to numerically study the thermoelectric performance in a supersonic flow field by employing the computational fluid dynamics and the thermal conduction theory. Results are given in the cases of different Mach numbers. Moreover, the thermoelectric performance in each case is predicted with and without Thomson heat, respectively. Due to the increase of Mach number, both the temperature difference and the conductive heat flux between the hot side and the cold side of nose tip are increased. This results in the growth of the thermoelectric power generated and the energy conversion efficiency. With respect to the Thomson effect, over 50% of total power generated converts to Thomson heat, which greatly reduces the thermoelectric power and efficiency. However, whether the Thomson effect is considered or not, with the Mach number increasing from 2.5 to 4.5, the thermoelectric performance can be effectively improved.  相似文献   

4.
The temperature distribution of a thermoelectric cooler under the influence of the Thomson effect, the Joule heating, the Fourier’s heat conduction, and the radiation and convection heat transfer is derived. The influence of the Thomson effect on the temperature profiles, on the fraction of the Joule’s heat that flows back to the low-temperature side, and consequently on the maximum attainable temperature difference and the maximum allowable heat load are emphasized and explored. The results suggest that the cooling efficiency of a thermoelectric cooler can be improved not only by increasing the figure-of-merit of the thermoelectric materials but also by taking advantage of the Thomson effect. A possible development direction for the thermoelectric materials is thus given.  相似文献   

5.
In the present study, the results of a cold‐hot water dispenser with a thermoelectric module system (TMS) are presented. The cold‐hot water dispenser with thermoelectric module system consists of a cold water loop, a hot water loop, a coolant loop, and a thermoelectric module. The thermoelectric cooling and heating modules consist of four and two water blocks, nine and three thermoelectric plates, respectively. The cooling and heating capacities obtained from the cold‐hot water dispenser with TMS are compared with those from a conventional cold‐hot water dispenser with a compression refrigeration system (CRS). As compared with the conventional cold‐hot water dispenser with CRS, the cold‐hot water dispenser with TMS can be operated at the minimum cold water temperature of 10 to 13°C and the maximum hot water temperature of 65°C. The obtained results are expected provide guidelines to design cold‐hot water dispensers with TMS.  相似文献   

6.
Power generation characteristics of a sandwich‐type thermoelectric generator in which the heat source is embedded into thermoelectric elements are investigated. Our previous work on a similar concept only considered a uniform heat source distribution inside thermoelectric elements. In this work, the effect of the spatial distribution of a heat source is examined. In particular, the effect of the concentration of heat source near the one end, that is, the hot end, is intensively studied as a potential means of improving the efficiency of the device. Although the effects of heat source concentration in impractical cases without heat transfer limitations on the cold side remain ambiguous, it become clear that heat source concentration indeed has positive effects in more realistic cases with finite heat transfer coefficients imposed on the cold side. Because of the relatively low efficiency of typical thermoelectric generation, a significant amount of heat must be dissipated from the cold end of the thermoelectric element. Greater heat source concentration near the hot end leads to more effective utilization of available heat source, reduces the amount of heat rejected at the cold end, and lowers the hot end temperature of the thermoelectric element. Overall, it is suggested that heat source concentration can be used as a method to achieve more efficient operation and better structural integrity of the system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Thermoelectric systems (TE) can directly convert heat to electricity and vice-versa by using semiconductor materials. Therefore, coupling between heat transfer and electric field potential is important to predict the performance of thermoelectric generator (TEG) systems. This paper develops a general two-dimensional numerical model of a TEG system using nanostructured thermoelectric semiconductor materials. A TEG with p-type nanostructured material of Bismuth Antimony Telluride (BiSbTe) and n-type Bismuth Telluride (Bi2Te3) with 0.1 vol.% Silicon Carbide (SiC) nanoparticles is considered for performance evaluations. Coupled TE equations with temperature dependant transport properties are used after incorporating Fourier heat conduction, Joule heating, Seebeck effect, Peltier effect, and Thomson effect. The effects of temperature difference between the hot and cold junctions and surface to surrounding convective on different output parameters (e.g., thermal and electric fields, power generation, thermal efficiency, and current) are studied. Selected results obtained from current numerical analysis are compared with the results obtained from analytical model available in the literature. There is a good agreement between the numerical and analytical results. The numerical results show that as temperature difference increases output power and amount of current generated increase. Moreover, it is quite apparent that convective boundary condition deteriorates the performance of TEG.  相似文献   

8.
It is shown, experimentally, that in certain initial conditions of temperature, and for certain parameters, a ‘reaction in chain’ may start in a thermocouple, and produce a ‘permanent regime’, through which heat from a single course is converted into electrical energy. It is shown, theoretically, that the phenomenon occurs when compensation of heat losses due to thermal conduction, through Peltier and Thomson heat is realized, so that the efficiency is affected only by the Joule effect, and may attain much higher values than through conventional operation of these thermoelectric devices, conventional peration requiring two heat sources, a hot and a cold one.  相似文献   

9.
建立非均质温差发电器(TEG)理论模型,考虑热电材料的非均质导热系数以及温差发电器与热源间的传热热阻的影响,分析非均质温差发电器的一般性能.讨论热电元件对数、热导率、高温热源温度对非均质温差发电器性能特性的影响.结果表明,相较于均质温差发电器,导热系数不均匀强度越大,非均质温差发电器的最大输出功率和最大效率越高;热电元...  相似文献   

10.
Computational fluid dynamics (CFD) and experimental studies are conducted towards the optimization of the Ranque-Hilsch vortex tubes. Different types of nozzle profiles and number of nozzles are evaluated by CFD analysis. The swirl velocity, axial velocity and radial velocity components as well as the flow patterns including secondary circulation flow have been evaluated. The optimum cold end diameter (dc) and the length to diameter (L/D) ratios and optimum parameters for obtaining the maximum hot gas temperature and minimum cold gas temperature are obtained through CFD analysis and validated through experiments. The coefficient of performance (COP) of the vortex tube as a heat engine and as a refrigerator has been calculated.  相似文献   

11.
The performance optimization of an endoreversible air refrigerator with variable‐temperature heat reservoirs is carried out by taking the cooling load density, i.e. the ratio of cooling load density to the maximum specific volume in the cycle, as the optimization objective in this paper. The analytical relations of cooling load, cooling load density and coefficient of performance are derived with the heat resistance losses in the hot‐ and cold‐side heat exchangers. The maximum cooling load density optimization is performed by searching the optimum pressure ratio of the compressor, the optimum distribution of heat conductance of the hot‐ and cold‐side heat exchangers for the fixed total heat exchanger inventory, and the heat capacity rate matching between the working fluid and the heat reservoirs. The influences of some design parameters, including the heat capacitance rate of the working fluid, the inlet temperature ratio of heat reservoirs and the total heat exchanger inventory on the maximum cooling load density, the optimum heat conductance distribution, the optimum pressure ratio and the heat capacity rate matching between the working fluid and the heat reservoirs are provided by numerical examples. The refrigeration plant design with optimization leads to a smaller size including the compressor, expander and the hot‐ and cold‐side heat exchangers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
相变蓄冷技术可以有效解决能源转换与存储问题。但相变材料具有导热性能差,传热不均匀等问题。引入有限时间热力学概念,建立更为实际的蓄冷系统数学模型,对相变蓄冷系统进行热力学优化。通过解析计算,得出蓄冷系统高低温热源与蓄放冷时间的关系式。对比理想状态下与添加不可逆热损耗时蓄冷系统的功率与效率,为相变蓄冷技术的应用提供了理论基础与指导。  相似文献   

13.
The cascaded thermal storage technique has emerged as an important solution for efficient conversion and utilization of thermal energies. In this paper, an exergy optimization was performed for cascaded latent cold/heat storage using multi-stage heat engine model. The optimization solution for both heat storage and cold storage systems was obtained, which was used for guiding the selection of PCMs with two examples presented. Cascaded thermal storage with increased stage number can not only extend temperature band for multi-grade thermal energy, but also reduce the exergy of the outlet HTF. It was found that heat transfer enhancement (improving NTU) is very necessary for a cascaded thermal storage system. The COP of cold energy may be greater than 1, which is also higher than that of heat for the same temperature difference in a cascaded thermal storage system. The increased environment temperature improves the COP of the cascaded cold storage (from 0.54 to 0.68) but reduces that of the cascaded heat storage (from 0.42 to 0.366). In the practical design of the cascaded thermal storage system, the stage number should be determined by balancing economics and system complexity.  相似文献   

14.
厨房余热回收热电热泵储水式热水器的研究   总被引:1,自引:0,他引:1  
在热电热泵热力学分析的基础上,设计研制了一台用于回收公共厨房排气余热、容积为36L的热电热泵储水式热水器,该装置采用热管散热器对热电热泵冷、热端散热,在回收厨房余热的同时制取生活热水.针对该热电热泵储水式热水器,对其制热性能进行实验研究,结果表明:热电热泵冷、热端温差是影响热电热泵制热性能的重要因素:排气温度越高,热水温度越低,则冷、热端温差越小,制热系数越大.在此基础上,对热电热泵储水式热水器进行优化,并对样机的性能进行测试,结果表明:工作电压对热水加热时间影响较大,工作电压越大,加热时间越短;在电压20V时将热水从28℃加热到46℃,样机相比普通电热水器节省电耗30%以上.  相似文献   

15.
A mathematical model is developed to study the performance of a parallel-flow heat exchanger in which both fluid streams are interacting thermally with the surroundings. The fluid temperatures are found to be dependent on the magnitude of the ambient temperature relative to fluid inlet temperatures, the ratios of conductances between the fluids and the ambient and the interfluid conductance, the ratio of minimum to maximum fluid capacities, and the number of transfer units, NTU, for the heat exchanger. Two heat exchanger effectiveness criteria, one each for the hot and cold fluids, are used to study performance. The effectiveness is found to be adversely affected by increasing conductance ratios, increasing NTU, and increasing temperature difference between the ambient and the fluid of interest. For very high values of the conductance ratios, the heat exchanger will not perform as expected and both fluid temperatures will approach that of the ambient. The parallel-flow arrangement is compared to counterflow and is found to be less effective under the external heat transfer condition.  相似文献   

16.
Salinity-gradient solar ponds can collect and store solar heat at temperatures up to 80 °C. As a result, these water bodies act as a renewable source of low grade heat which can be utilized for heating and power generation applications. In this paper, design and test result of the combined system of thermosyphon and thermoelectric modules (TTMs) for the generation of electricity from low grade thermal sources like solar pond is discussed. In solar ponds, temperature difference in the range 40-60 °C is available between the lower convective zone (LCZ) and the upper convective zone (UCZ) which can be applied across the hot and cold surfaces of the thermoelectric modules to make it work as a power generator. The designed system utilizes gravity assisted thermosyphon to transfer heat from the hot bottom to the cold top of the solar pond. Thermoelectric cells (TECs) are attached to the top end of the thermosyphon which lies in the UCZ thereby maintaining differential temperature across them. A laboratory scale model based on the proposed combination of thermosyphon and thermoelectric cells was fabricated and tested under the temperature differences that exist in the solar ponds. Result outcomes from the TTM prototype have indicated significant prospects of such system for power generation from low grade heat sources particularly for remote area power supply. A potential advantage of such a system is its ability to continue to provide useful power output at night time or on cloudy days because of the thermal storage capability of the solar pond.  相似文献   

17.
《Energy Conversion and Management》2005,46(15-16):2637-2655
In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions.  相似文献   

18.
设计了一种针对高温烟气的圆筒式温差发电装置,在装置中设置分流桶增强烟气侧的换热效果。利用Ansys Fluent软件对装置的温度场、速度场及排气压降进行仿真模拟,分析了不同分流桶的桶直径、端盖孔直径和分流孔直径对热电模块冷热端温度分布的影响。仿真结果表明:温差发电系统集热器通道中设置分流桶可以实现高效温差发电,分流桶端盖未开孔时装置的换热效果优于端盖开孔结构;适当减小分流孔直径或增大分流桶直径会提升热电模块的冷热端温差,分流孔直径为2 mm时的换热效果最优,分流桶直径过大会使热电模块温度分布及温差的均匀性降低;系统烟气压降会随着分流孔直径的增大或分流桶直径的减小而降低。  相似文献   

19.
A thermoelectric generator was fitted to the side of a domestic woodstove. The generator was driven using one or more thermoelectric modules designed to give significant power at a reasonable cost. The thermoelectric generator was air cooled by natural convection using a commercially available heat sink. Testing was undertaken under a controlled woodstove firing rate and temperatures, and open circuit voltages were monitored over extended periods. The maximum steady state matched load power was 4.2 W using a single module. The use of multiple modules with a single heat sink was found to reduce the total power output relative to the single module case as a result of reduced hot to cold surface temperature differences.  相似文献   

20.
The heat transfer rate and efficiency of TE (thermoelectric) cooling systems were investigated. The emphasis of the present study is focused on the use of large-scale TE refrigerators for air conditioning applications. A one-dimensional heat transfer analysis was performed to determine the cooling power and electricity consumption of the TE elements. The constant-property results are in good agreement with the variable-property solutions for TE materials and temperatures typical for air conditioning applications. A heat transfer analysis was also carried out for TE refrigerators equipped with a heat exchanger. Both parallel- and counter-flow heat exchangers were considered. Fluid temperature variations of these two flow arrangements were found to be quite different, but the efficiencies and cold fluid exit temperatures differed only slightly when a uniform current was used for all TE elements. If the length of the heat exchanger exceeds an optimal value, the cold fluid temperature begins to rise and the efficiency drops for both parallel- and counter-flow arrangements. The second law of thermodynamics was applied to the optimization of TE refrigerators operating between two constant-temperature reservoirs and between two flowing fluids. It was found that if a TE cooling system incorporates a heat exchanger, a nonuniform current distribution should be used to achieve the maximum efficiency and the lowest cold fluid temperature. The optimization results for TE refrigerators operating between two constant-temperature reservoirs are not applicable to TE cooling systems between two flowing fluids. The most energy-efficient current distribution for the parallel-flow arrangement is the one which increase in the direction of the cold fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号