首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the fuel concentration gradient and the octane number on the autoignition and knocking phenomena in a stratified mixture were studied experimentally on a using a rapid compression machine using stratified mixtures of air and fuels n-heptane, iso-octane, n-hexane, and n-pentane with different octane numbers (0, 100, 25, and 62, respectively). In the chamber, the lower the vertical location, the richer the fuel concentration of the mixture. The mixture contains no gradient in the horizontal direction. The experimental results show that rapid spread of the flame is caused not by flame propagation but by sequential autoignition. Although ignition delays of a stratified mixture are not dependent on the fuel concentration gradient in the mixture, they are constant as long as mean equivalence ratio is the same, and they decrease with the decreasing mean equivalence ratio. In excess of certain gradient value, the knock intensity is smaller as the gradient becomes larger for all fuels tested regardless of their octane number. __________ Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 93–100, July–August, 2009.  相似文献   

2.
Martin Malenshek 《Fuel》2009,88(4):650-656
Alternative gaseous fuels, like syn-gas and bio-gas, are attractive fuels for internal combustion engines due to energy and environmental concerns. Although the worldwide use of alternative gaseous fuels has increased, the knock properties of these fuels are not well understood. The methane number (MN) knock rating technique was selected based on its range and sensitivity. Eight alternative gaseous fuel compositions were simulated with a gas blending system and tested for MN in a Cooperative Fuel Research (CFR) F-2 engine. The alternative gaseous fuels ranged from 24 to 140 MN (natural gas typical range 75-95).  相似文献   

3.
Yufeng Li  Hua Zhao  Tom Ma 《Fuel》2006,85(4):465-473
The concept of fuel stratification has been proposed and applied to a four-valve port injection spark ignition engine. In this engine, two different fuels or fuel components are admitted through two separate inlet ports and stratified into two regions laterally by strong tumble flows. Each stratified region has a spark plug to control the ignition. This engine can operate in the stratified lean-burn mode at part loads when fuel is supplied only to one of the inlet ports. While at high load operation, an improved fuel economy and higher power output are also expected through increased anti-knock features by taking advantage of the superior characteristics of different fuel or fuel components. This is achieved by igniting the lower RON (research octane number) fuel first and leaving the higher RON fuel in the end gas region. In this paper, knock limits of homogenous and different fuel stratification combustion modes at high loads were investigated experimentally. Primary reference fuels (PRF), iso-octane and n-heptane, were used to simulate three fuels of different RON: RON90, RON95 and RON100. The research results show that with stratified fuel components of low and high octane numbers, the knock limit, as defined by the minimum spark advance for knocking combustion, was extended apparently when the lower RON fuel was ignited first. In addition, the knock limit could also be extended by increasing the amount of higher RON fuel. However, igniting first the lower RON fuel in the fuel stratification combustion mode produced little improvement in anti-knock behaviour over the homogeneous combustion of the mixture of those two stratified fuels with an average RON.  相似文献   

4.
C. Rahmouni  M. Tazerout 《Fuel》2004,83(3):327-336
This paper presents the determination of knock rating of gaseous fuels in a single cylinder engine. The first part of the work deals with an application of a standard method for the knock rating of gaseous fuels. The Service Methane Number (SMN) is compared with the standard Methane Number (MN) calculated from the standard AVL software METHANE (which corresponds to the MN measured on a Cooperative Fuel Research engine). Then, in the second part, the ‘mechanical’ resistance to knock of our engine is highlighted by means of the Methane Number Requirement (MNR). A single cylinder LISTER PETTER engine was modified to run as a spark ignition engine with a fixed compression ratio and an adjustable spark advance. Effects of engine settings on the MNR are deduced from experimental data and compared extensively with previous studies. Using the above, it is then possible to adapt the engine settings for optimal knock control and performances. The error on the SMN and MNR stands beneath ±2 MN units over the gases and engine settings considered.  相似文献   

5.
S. Szwaja  J.D. Naber 《Fuel》2010,89(7):1573-1582
Alcohols, because of their potential to be produced from renewable sources and because of their high quality characteristics for spark-ignition (SI) engines, are considered quality fuels which can be blended with fossil-based gasoline for use in internal combustion engines. They enable the transformation of our energy basis in transportation to reduce dependence on fossil fuels as an energy source for vehicles. The research presented in this work is focused on applying n-butanol as a blending agent additive to gasoline to reduce the fossil part in the fuel mixture and in this way to reduce life cycle CO2 emissions. The impact on combustion processes in a spark-ignited internal combustion engine is also detailed. Blends of n-butanol to gasoline with ratios of 0%, 20%, and 60% in addition to near n-butanol have been studied in a single cylinder cooperative fuels research engine (CFR) SI engine with variable compression ratio manufactured by Waukesha Engine Company. The engine is modified to provide air control and port fuel injection. Engine control and monitoring was performed using a target-based rapid-prototyping system with electronic sensors and actuators installed on the engine [1]. A real-time combustion analysis system was applied for data acquisition and online analysis of combustion quantities. Tests were performed under stoichiometric air-to-fuel ratios, fixed engine torque, and compression ratios of 8:1 and 10:1 with spark timing sweeps from 18° to 4° before top dead center (BTDC). On the basis of the experimental data, combustion characteristics for these fuels have been determined as follows: mass fraction burned (MFB) profile, rate of MFB, combustion duration and location of 50% MFB. Analysis of these data gives conclusions about combustion phasing for optimal spark timing for maximum break torque (MBT) and normalized rate for heat release. Additionally, susceptibility of 20% and 60% butanol-gasoline blends on combustion knock was investigated. Simultaneously, comparison between these fuels and pure gasoline in the above areas was investigated. Finally, on the basis of these conclusions, characteristic of these fuel blends as substitutes of gasoline for a series production engine were discussed.  相似文献   

6.
郭克群 《山东化工》2012,41(3):39-42,46
基于气液平衡理论,建立了热力学状态方程二元交互作用参数估算模型。首先,结合气液平衡理论、状态方程以及相应的混合规则建立气液相平衡数学模型;然后以气相组成误差平方和与压力相对误差平方和之和作为目标函数,并使用计算机编程,利用单纯形法进行优化求解,实现了热力学状态方程二元交互作用参数估算模型的开发;最后,用该模型对5组二元气液平衡体系中的组分二元交互作用参数进行估算,并根据估算出的参数对各体系的气相组成进行预测,结果显示,预测值与实验值的平均相对偏差均小于1%,表明该模型计算结果准确,可应用于气液平衡计算中。  相似文献   

7.
Knock is a major problem when running combined heat and power (CHP) gas engines because of the variation in the network natural gas composition. A curative solution is widely applied, using an accelerometer to detect knock when it occurs. The engine load is then reduced until knock disappears. The present paper deals with a knock preventive device. It is based on the knock prediction following the engine operating conditions and the fuel gas methane number, and it acts on the engine load before knock happens. A state of the art about knock prediction models is carried out. The maximum of the knock criterion is selected as knock risk estimator, and a limit value above which knock may occur is defined. The estimator is calculated using a two-zone thermodynamic model. This model is specifically based on existing formulas for the calculation of the combustion progress, modified to integrate the effect of the methane number. A chemical kinetic model with 53 species and 325 equilibrium reactions is used to calculate unburned and burned gases composition. The different parameters of the model are fitted with a least squares method from an experimental data base. Errors less than 8% are achieved. The knock risks predicted for various natural gases and operating conditions are in agreement with previous work. Nevertheless, the knock risk estimator is overestimated for natural gases with high concentrations of inert gases such as nitrogen and carbon dioxide. The definition of a methane number limit based on the engine manufacturer's recommendation is then required to eliminate unwarranted alerts. Safe operating conditions are thus calculated and gathered in the form of a map. This map, combined with the real time measurement of the fuel gas methane number, can be integrated to the control device of the CHP engine in order to guarantee a safe running towards fuel gas quality variation.  相似文献   

8.
The effects of mineral diesel fuel, gas-to-liquid fuel, rapeseed methyl ester, neat soybean and neat rapeseed oil on injection, combustion, efficiency and pollutant emissions have been studied on a compression ignition heavy duty engine operated near full load and equipped with a combined exhaust gas aftertreatment system (oxidation catalyst, particle filter, selective catalytic NOx reduction). In a first step, the engine calibration was kept constant for all fuels which led to differences in engine torque for the different fuels. In a second step, the injection duration was modified so that all fuels led to the same engine torque. In a third step, the engine was recalibrated in order to keep the NOx emissions at an equal level for all fuels (injection pressure, injection timing, EGR rate). The experiments show that the critical NOx emissions were higher (even behind the exhaust gas aftertreatment systems) for oxygenated fuels in case of the engine not being recalibrated for the fuel. GTL and the oxygenated fuels show lower emissions for some pollutants and higher efficiency after recalibration to equal NOx levels.  相似文献   

9.
This paper analyses the fuel injection characteristics of bioethanol-diesel fuel and bioethanol-biodiesel blends considered as fuel for diesel engines. Attention is focused on the injection characteristics which significantly influence the engine characteristics and subsequently the exhaust emissions. In this context the following injection characteristics have been investigated experimentally: fuelling, injection timing, injection delay, injection duration, mean injection rate, and injection pressure. The tested fuels were neat mineral diesel fuel, neat biodiesel made from rapeseed oil, bioethanol/diesel fuel and bioethanol/biodiesel blends up to 15% (v/v) bioethanol with an increment of 5%. The fuels blends were experimentally investigated in a fuel injection M system at rated condition (FL, 1100 rpm), peak torque (FL, 850 rpm), and maximum pump speed (1100 rpm) for different partial loads (PL 75% and PL 50%), at ambient temperature.It has been proven that for all operating regimens tested, the addition of bioethanol to biodiesel reduces fuelling, injection timing, injection duration, mean injection rate and maximum injection pressure and increases injection delay compared to pure biodiesel. Meanwhile, increasing bioethanol in diesel fuel shows no significant variations or a slightly increase in fuelling, injection timing, injection duration, and mean injection rate and a decrease in injection delay and maximum injection pressure, compared to pure diesel fuel.The influence of bioethanol in biodiesel is much more significant that in diesel fuel; it has a beneficial effect on biodiesel injection characteristics because bioethanol addition brings them nearer to the diesel fuel one and it is expected to decrease biodiesel NOx emissions.  相似文献   

10.
The present paper describes the results of an experimental study performed burning alternative fuels, different per quality and feedstock, in a modern diesel engine compliance the Euro 5 emission standards. Three alternative fuels were tested on the engine and compared with a reference fossil fuel in terms of combustion characteristics, fuel consumption, noise and emissions. The alternative fuels were two biodiesels (RME and SME) and a Fischer-Tropsh (GTL), while the reference fuel was an EU certification diesel fuel. The engine employed in the study was a light-duty diesel engine developed for passenger car and light truck application, and equipped with the new generation ECU able to drive the engine under “torque-controlled” mode by means of instrumented glow-plugs with pressure sensor. The experiments were carried out in a fully instrumented test bench fuelling the engine with the various fuels. The tests were done in a wide range of engine operation points for the complete characterization of the biodiesels performance in the NEDC cycle. Moreover, the trade-off NOx-PM by EGR sweep in the three most critical test points for the engine emission performance was carried out for all fuels. The test methodology was selected carefully in order to evaluate the interaction between the fuel quality and the engine management strategy. The results put in evidence a strong interaction between the alternative fuel quality and the engine control mode highlighting the great benefits reachable by exploiting simultaneously the alternative fuel quality and the flexibility of the new engine management strategies.  相似文献   

11.
Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties.Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NOx emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency.  相似文献   

12.
The present work is focused on a comparative experimental study for determining the effect of fuel properties on the constructive characteristics of some pieces of a current common rail injection system used in light duty diesel vehicles. Two Bosch fuel injection systems, each composed by a high pressure injection pump Bosch (270 CDI), the common rail and a Bosch piezoelectric fuel injector, were selected to be tested with two fuels. The first of the systems was tested with a low sulphur commercial diesel fuel while the second was tested with an ethanol-biodiesel-diesel blend (7.7% v/v ethanol (E), 27.69% v/v biodiesel (B) and 69.61% v/v (diesel) reference diesel fuel) Both systems were tested during an accelerated durability test. In both cases, the injection systems were mounted in an injection test bench and were working during 12 h/day up to 600 h. An injection pressure of 1500 bar, a regime of 2500 min−1 and an injection time of 1 ms were selected as the most critical engine operating conditions. Test conditions were equivalent to drive a light duty vehicle during more than 120,000 km. Before and after the durability tests with each fuel tested, different pieces of the injection pump were physical characterized. Several techniques such as: a tester for the roughness surface characterization of elements, an optical microscope for the observation of the surface microstructure, an shadow comparator for geometrical characterization of elements, weighed of components by mean of an analytical balance and, finally, the nozzle dimensions were carefully determined from images of a scanning electronic microscope (SEM) of the inner shape obtained by casting silicone. Results show that the use of the ethanol-biodiesel-diesel blend tested produced a similar effect on the durability on the injection pump components studied and on the injector nozzle as that produced by diesel fuel.  相似文献   

13.
Numerical analysis of injection characteristics using biodiesel fuel   总被引:1,自引:1,他引:1  
Breda Kegl   《Fuel》2006,85(17-18):2377-2387
This paper deals with numerical analysis of injection process using biodiesel/mineral diesel fuel blends with the aim to search for the potentials to reduce engine harmful emissions. The considered fuels are neat biodiesel from rapeseed oil and its blends with mineral diesel D2. For the numerical analysis a one-dimensional mathematical model is employed. In order to model accurately the investigated fuels, the employed empirical expressions for their properties are determined by experiments. To verify the mathematical model and the empirical expressions, experiments and numerical simulation are run on a mechanical control diesel fuel injection M system at several operating regimes. Injection process at many different operating regimes and using several fuel blends are then investigated numerically. Attention is focused on the injection characteristics, especially on fuelling, fuelling at some stage of injection, mean injection rate, mean injection pressure, injection delay and injection timing, which influence the most important engine characteristics. The analysis of the obtained results reveals that, while keeping engine performance within acceptable limits, harmful emissions can be reduced by adjusting appropriately pump injection timing in dependence on the biodiesel content. This prediction is also confirmed experimentally.  相似文献   

14.
S. Som  D.E. Longman  A.I. Ramírez  S.K. Aggarwal 《Fuel》2010,89(12):4014-4024
Performance and emission characteristics of compression ignition engines depend strongly on inner nozzle flow and spray behavior. These processes control the fuel air mixing, which in turn is critical for the combustion process. The differences in the physical properties of petrodiesel and biodiesel are expected to significantly alter the inner nozzle flow and spray structure and, thus, the performance and emission characteristics of the engine. In this study, the inner nozzle flow dynamics of these fuels are characterized by using the mixture-based cavitation model in FLUENT v6.3. Because of its lower vapor pressure, biodiesel was observed to cavitate less than petrodiesel. Higher viscosity of biodiesel resulted in loss of flow efficiency and reduction in injection velocity. Turbulence levels at the nozzle orifice exit were also lower for biodiesel. Using the recently developed KH-ACT model, which incorporates the effects of cavitation and turbulence in addition to aerodynamic breakup, the inner nozzle flow simulations are coupled with the spray simulations in a “quasi-dynamic” fashion. Thus, the influence of inner nozzle flow differences on spray development of these fuels could be captured, in addition to the effects of their physical properties. Spray penetration was marginally higher for biodiesel, while cone angle was lower, which was attributed to its poor atomization characteristics. The computed liquid lengths of petrodiesel and biodiesel were compared with data from Sandia National Laboratories. Liquid lengths were higher for biodiesel due to its higher boiling temperature and heat of vaporization. Though the simulations captured this trend well, the liquid lengths were underpredicted, which was attributed to uncertainty about the properties of biodiesel used in the experiments. Parametric studies were performed to determine a single parameter that could be used to account for the observed differences in the fuel injection and spray behavior of petrodiesel and biodiesel; fuel temperature seems to be the best parameter to tune.  相似文献   

15.
Dirk D. Link  Paul Zandhuis 《Fuel》2006,85(4):451-455
The mechanism by which jet fuels are hydrotreated to reduce sulfur levels has some important implications in terms of the species and distribution of sulfur compounds remaining in the fuel. The species of sulfur that are most difficult to remove by hydrotreating, such as benzothiophenes and methyl- and dimethyl-benzothiophenes, are concentrated in the higher-boiling fraction of the fuel. Consequently, the lower-boiling fractions of the fuel contain much less sulfur. It may be possible, therefore, to obtain petroleum fractions that contain low levels of sulfur simply by distillation of the jet fuel into low-boiling and high-boiling fractions. A multi-element simulated distillation procedure according to ASTM D-2887, standard test method for boiling range distribution of petroleum fractions by gas chromatography, was coupled with atomic emission detection (GC-AED) and was used to estimate the sulfur concentration in various fractions of jet fuel, namely 20, 50, and 60%. The estimations of sulfur concentration were verified by comparing them to analyzed sulfur concentrations in several fractions of physical distillations of the jet fuels according to a modified ASTM D-86, standard test method for distillation of petroleum products at atmospheric pressure. Sulfur analyses showed that for all fuels analyzed, the initial 20% boiling fraction of the fuel contained no more than approximately 5% of the total sulfur concentration. The initial 50% boiling fraction of the fuel contained no more than 25% of the total sulfur concentration, and in most cases contained significantly less (8-16%). The total concentration of sulfur in the jet fuels tested ranged from 260 to 1380 μg/g, and there did not appear to be a direct relationship between total sulfur concentration and percentage of sulfur in each jet fuel boiling fraction.  相似文献   

16.
To study the low pressure influence on the flash point and fire hazard of organic fuels and their aqueous solutions, a series of experiments has been conducted to measure the open‐cup and closed‐cup flash points of methanol, ethanol, and n‐decane aqueous solutions including different mole fractions under different static pressures ranging from 35 to 101 kPa. The results show that both the pressure and fuel mole fraction have a nonlinear correlation with the flash point of the miscible fuel specimens like the correlation provided in this paper. For the partially miscible fuel specimens with a lower density than water, the water content has almost no influence on the flash point. The fire risks of the experimental results were analysed based on the standard GB50160‐2008, which shows that the fire risk becomes higher at low pressures, and there is a critical pressure at the turning point of the change in fire classification. A method to achieve the critical low pressure of different fuels or aqueous solutions from the fire hazard classification is derived in this paper.  相似文献   

17.
In this paper, a back propagation artificial neural network (BP-ANN) model is presented for the simultaneous estimation of vapour liquid equilibria (VLE) of four binary systems viz chlorodifluoromethan-carbondioxide, trifluoromethan-carbondioxide, carbondisulfied-trifluoromethan and carbondisulfied-chlorodifluoromethan. VLE data of the systems were taken from the literature for wide ranges of temperature (222.04-343.23K) and pressure (0.105 to 7.46MPa). BP-ANN trained by the Levenberg-Marquardt algorithm in the MATLAB neural network toolbox was used for building and optimizing the model. It is shown that the established model could estimate the VLE with satisfactory precision and accuracy for the four systems with the root mean square error in the range of 0.054-0.119. Predictions using BP-ANN were compared with the conventional Redlich-Kwang-Soave (RKS) equation of state, suggesting that BP-ANN has better ability in estimation as compared with the RKS equation (the root mean square error in the range of 0.115-0.1546).  相似文献   

18.
《Drying Technology》2013,31(10):1919-1939
ABSTRACT

The aim of this paper is to show the interest of the covariance analysis applied to measurement error in the particular case of the identification of a drying characteristic curve from experimental drying data. The modelisation of drying by use of the Drying Characteristic Curve (DCC) method is first presented with usual specifications (power function, critical moisture content …). The experimental procedure used to obtain drying curves and the data processing are detailled and analysed. Measurements errors are identified at the first step of the procedure and their effects on the estimation error of the exponent α of the power function are estimated. Three different methods for estimating α are presented under their matrix form: the least square method and two methods based on the «Gauss–Markov» or «Maximum likelihood» theorem, firstly under a simplified form suited if the estimation errors are uncorrelated and secondly under a complete form suited even if the estimation errors are correlated. These three methods are applied to experimental results obtained with ginger roots drying. The value of the exponent α of the power function and then the distances between the three corresponding theoretical drying curves (representing product water content vs. time) and the experimental points are studied. It is shown that in this particular application, the complete Gauss–Markov method leads to the better fitting and that the simplified Gauss–Markov method, since it is a priori non appliable in this case where errors are correlated, gives quite better results than the oridnary least squares method. The covariance matrices of the estimation errors of reduced water content, reduced drying rate and exponent α are also presented in order to show the correlations existing between the measurement errors of each variable during a drying cycle.  相似文献   

19.
This paper presents experimental results of rapeseed methyl ester (RME) and diesel fuel used separately as pilot fuels for dual-fuel compression-ignition (CI) engine operation with hydrogen gas and natural gas (the two gaseous fuels are tested separately). During hydrogen dual-fuel operation with both pilot fuels, thermal efficiencies are generally maintained. Hydrogen dual-fuel CI engine operation with both pilot fuels increases NOx emissions, while smoke, unburnt HC and CO levels remain relatively unchanged compared with normal CI engine operation. During hydrogen dual-fuel operation with both pilot fuels, high flame propagation speeds in addition to slightly increased ignition delay result in higher pressure-rise rates, increased emissions of NOx and peak pressure values compared with normal CI engine operation. During natural gas dual-fuel operation with both pilot fuels, comparatively higher unburnt HC and CO emissions are recorded compared with normal CI engine operation at low and intermediate engine loads which are due to lower combustion efficiencies and correspond to lower thermal efficiencies. This could be due to the pilot fuel failing to ignite the natural gas-air charge on a significant scale. During dual-fuel operation with both gaseous fuels, an increased overall hydrogen-carbon ratio lowers CO2 emissions compared with normal engine operation. Power output (in terms of brake mean effective pressure, BMEP) as well as maximum engine speed achieved are also limited. This results from a reduced gaseous fuel induction capability in the intake manifold, in addition to engine stability issues (i.e. abnormal combustion). During all engine operating modes, diesel pilot fuel and RME pilot fuel performed closely in terms of exhaust emissions. Overall, CI engines can operate in the dual-fuel mode reasonably successfully with minimal modifications. However, increased NOx emissions (with hydrogen use) and incomplete combustion at low and intermediate loads (with natural gas use) are concerns; while port gaseous fuel induction limits power output at high speeds.  相似文献   

20.
Fuel cell technology has a crucial role to play in future sustainable and distributed energy generation. With the issue of a reliable hydrogen supply in mind, fuel processing of fossil and renewable fuels is a viable option. Mobile and portable power generation systems require a compact hydrogen source when fuel cell technology is applied especially in applications focused on the small scale stationary level. Fuel processing is a feasible option to meet the limited space demands of auxiliary power units (APUs) due to the high energy density of liquid fuels. Many critical issues need to be addressed when microstructured reactors are applied. The most crucial of these are scale-up with respect to system integration, careful control of heat management and an increase in the durability of the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号