首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-phase heat transfer coefficient and pressure drop of pure HFC-134a condensing inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786 m long helically coiled double tube with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from smooth copper tubing of 9.52 mm outer diameter and 8.3 mm inner diameter. The outer tube is made from smooth copper tubing of 23.2 mm outer diameter and 21.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper double-concentric tube into a helical coil of six turns. The diameter of coil is 305 mm. The pitch of coil is 35 mm. The test runs are done at average saturation condensing temperatures ranging between 40 and 50 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The pressure drop across the test section is directly measured by a differential pressure transducer. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The average heat transfer coefficient of the refrigerant is determined by applying an energy balance based on the energy rejected from the test section. The effects of heat flux, mass flux and, condensation temperature on the heat transfer coefficients and pressure drop are also discussed. It is found that the percentage increase of the average heat transfer coefficient and the pressure drop of the helically coiled concentric tube-in-tube heat exchanger, compared with that of the straight tube-in-tube heat exchanger, are in the range of 33–53% and 29–46%, respectively. New correlations for the condensation heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

2.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

3.
An investigation on flow boiling heat transfer and pressure drop of HFC-134a inside a vertical helically coiled concentric tube-in-tube heat exchanger has been experimentally carried out. The test section is a six-turn helically coiled tube with 5.786-m length, in which refrigerant HFC-134a flowing inside the inner tube is heated by the water flowing in the annulus. The diameter and the pitch of the coil are 305 mm and 45 mm, respectively. The outer diameter of the inner tube and its thickness are respectively 9.52 and 0.62 mm. The inner diameter of the outer tube is 29 mm. The average vapor qualities in test section were varied from 0.1 to 0.8. The tests were conducted with three different mass velocities of 112, 132, and 152 kg/m2-s. Analysis of obtained data showed that increasing of both the vapor qualities and the mass fluxes leads to higher heat transfer coefficients and pressure drops. Also, it was observed that the heat transfer coefficient is enhanced and also the pressure drop is increased when a helically coiled tube is used instead of a straight tube. Based on the present experimental results, a correlation was developed to predict the flow boiling heat transfer coefficient in vertical helically coiled tubes.  相似文献   

4.
An experimental study on in-tube flow boiling heat transfer of R-134a/R-290/R-600a refrigerant mixture has been carried out under varied heat flux test conditions. The heat transfer coefficients are experimentally measured at temperatures between ?8 and 5 °C for mass flow rates of 3–5 g s?1. Acetone is used as a hot fluid which flows in the outer tube of diameter 28.57 mm while the refrigerant mixture flows in the inner tube of diameters 9.52 and 12.7 mm. By regulating the acetone flow conditions, the heat flux is maintained between 2 and 8 kW/m2 and the pressure of the refrigerant is maintained between 3.2 and 5 bar. The comparison of experimental results with the familiar correlations shows that the correlations over predict the heat transfer coefficients for this mixture when stratified and stratified-wavy flow prevail. Multiple regression technique is used to evolve and modify existing correlations to predict the heat transfer coefficient of the refrigerant mixture. It is found that the modified version of Lavin–Young correlation (1965) predicts the heat transfer coefficient of the considered mixture within an average deviation of ±20.5 %.  相似文献   

5.
This study compares well-known two-phase pressure drop models with the experimental results of a condensation pressure drop of (i) R600a in a 1 m long horizontal smooth copper tube with an inner diameter of 4 mm, outer diameter of 6 mm and (ii) R134a in a 0.5 m vertical smooth copper tube with an inner diameter of 8.1 mm and outer diameter of 9.52 mm. Different vapour qualities (0.45–0.9 for R600a and 0.7–0.95 for R134a), various mass fluxes (75–115 kg m?2 s?1 for R600a and 300–400 for R134a kg m?2 s?1) and different condensing temperatures (30–43 °C for R600a and 40–50 °C for R134a) were tested under annular flow conditions. The quality of the refrigerant in the test section was calculated considering the temperature and pressure obtained from the experiment. The pressure drop across the test section was directly measured with a differential pressure transducer. The most agreeable correlations of various available options were then identified according to the results of analysis during annular flow regime.  相似文献   

6.
An experimental investigation regarding two-phase diabatic pressure drops inside a helically coiled heat exchanger have been carried out at SIET thermo-hydraulics labs in Piacenza (Italy). The experimental campaign is part of a wide program of study of the IRIS innovative reactor steam generator. The test section consists of an AISI 316 stainless steel tube, 32 m length, 12.53 mm inner diameter, curved in helical shape with a bend radius of 0.5 m and a helix pitch of 0.8 m, resulting in a total height of the steam generator tube of 8 m. The explored operating conditions for two-phase flow experiences range from 192 to 824 kg/m2 s for the mass flux, from 0 to 1 for the quality, from 1.1 to 6.3 MPa for the pressure, from 50 to 200 kW/m2 for the heat fluxes. A frictional two-phase pressure drops correlation, based on an energy balance of the two-phase mixture and including the 940 experimental points, is proposed. Comparison with existing correlations shows the difficulty in predicting two-phase pressure drops in helical coil steam generators.  相似文献   

7.
An empirical setup has been established to study heat transfer and pressure drop characteristics during condensation of R600a, a hydrocarbon refrigerant, in a horizontal plain tube and different flattened channels. Round copper tubes of 8.7 mm I.D. were deformed into flattened channels with different interior heights of 6.7 mm, 5.2 mm and 3.1 mm as test sections. The test conditions include heat flux of 17 kw/m2, mass velocity in the range of 154.8–265.4 kg/m2s and vapor quality variation from approximately 10% to 80%. Results indicate that flattening the tubes causes significant enhancement of heat transfer coefficient which is also accompanied by simultaneous augmentation in flow pressure drop. Therefore, the overall performance of the flattened tubes with respect to heat transfer enhancement considering the pressure drop penalty is analyzed. It is concluded that the flattened tube with 5.2 mm inner height tube has the best overall performance. Due to the failure of pre-existing correlations for round tube condensation heat transfer, a new correlation is proposed which predicts 90% of the entire data within ± 17% error.  相似文献   

8.
This article presents the condensation heat transfer and flow characteristics of R-134a flowing through corrugated tubes experimentally. The test section is a horizontal counter-flow concentric tube-in-tube heat exchanger 2000 mm in length. A smooth copper tube and corrugated copper tubes having inner diameters of 8.7 mm are used as an inner tube. The outer tube is made from smooth copper tube having an inner diameter of 21.2 mm. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The test conditions are performed at saturation temperatures of 40–50 °C, heat fluxes of 5–10 kW/m2, mass fluxes of 200–700 kg/m2 s, and equivalent Reynolds numbers of 30000–120000. The Nusselt number and two-phase friction factor obtained from the corrugated tubes are significantly higher than those obtained from the smooth tube. Finally, new correlations are developed based on the present experimental data for predicting the Nusselt number and two-phase friction factor for corrugated tubes.  相似文献   

9.
Heat transfer coefficients during condensation of the zeotropic refrigerant mixture R-22 with R-142b are presented. Measurements were obtained at different mass fractions in a smooth horizontal tube. All measurements were conducted at a high condensing saturation pressure of 2.43 MPa, which corresponds to a condensation temperature of 60 °C for R-22. The measurements were taken in 8.11 mm inner diameter smooth tubes with lengths of 1 603 mm. The heat transfer coefficients were determined with the Log Mean Temperature Difference equations. It was found that at low mass fluxes, between 40 kg·m−2·s−1 to 350 kg·m−2·s−1, the refrigerant mass fraction influences the heat transfer coefficient by up to a factor of two. The heat transfer coefficients decrease as the fraction of R-142b is increased. At high mass fluxes, of 350 kg·m−2·s−1 and more the heat transfer coefficients were not strongly influenced by the refrigerant mass fraction. The average heat transfer coefficient decreased by only 7% as the refrigerant mass fraction changed from 100% R-22 to 50%/50% R-22/R142b.  相似文献   

10.
An innovative cooling system based on evaporative CO2 two-phase flow is under investigation for the tracker detectors upgrade at CERN (European Organization for Nuclear Research). The radiation hardness and the excellent thermodynamic properties emphasize carbon dioxide as a cooling agent in the foreseen minichannels. A circular stainless steel tube in horizontal orientation with an inner diameter of 1.42 mm and a length of 0.3 m has been used as a test section to perform the step-wise scanning of the vapor quality in the entire two-phase region. To characterize the heat transfer and the pressure drop depending on the vapor quality in the tube, measurements have been performed by varying the mass flux from 300 to 600 kg/m2 s, the heat flux from 7.5 to 29.8 kW/m2 and the saturation temperature from ?40 to 0 °C (reduced pressures from 0.136 to 0.472). Heat transfer coefficients between 4 kW/m2 K and 28 kW/m2 K and pressure gradients up to 75 kPa/m were registered. The measured data was analyzed corresponding to the dependencies on heat flux, mass flux and saturation temperature. A database has been established containing about 2000 measurement points. The experimental data was compared with common models recently developed by Cheng et al. [1], [2] to cross check their applicability. The overall trends and experimental data were reproduced as predicted by the models before the dryout onset, and deviations have been analyzed. A modified friction factor for the pressure drop model [1] in mist flow has been proposed based on the experimental data.  相似文献   

11.
Flow boiling heat transfer of R-134a refrigerant in a circular mini-channel, 600 mm long with a diameter of 1.75 mm, is investigated experimentally in this study. The test section is a stainless steel tube placed horizontally. Flow pattern and heat transfer coefficient data are obtained for a mass flux range of 200–1000 kg/m2 s, a heat flux range of 1–83 kW/m2 and saturation pressures of 8, 10, and 13 bar. Five different flow patterns including slug flow, throat-annular flow, churn flow, annular flow and annular-rivulet flow are observed and the heat transfer coefficient data for different flow patterns are presented. The heat transfer coefficient increases with increasing heat flux but is mostly independent of mass flux and vapour quality. In addition, it is indicated from the experiments that the higher the saturation pressure, the lower is the heat transfer coefficient. Comparisons of the present data with the existing correlations are also presented.  相似文献   

12.
This experimental study aims to investigate the heat transfer characteristics of single-phase turbulent flow of R-134a refrigerant in a rectangular multi-micro channel heat sink having 27 channels where each channel has a hydraulic diameter of 421 μm. Experimental results were obtained for inlet temperatures ranging from 24 to 33 °C, mass fluxes from 1485 to 2784 kg m 2 s 1 and wall heat fluxes from 3 to 24 kW m 2. The results indicate that the heat transfer coefficients are found to be higher at lower inlet temperatures than those at higher ones. In addition, when equal amount of heat supplied to the heat sink, the heat transfer coefficients increase with increasing the mass flux of refrigerant. They were also compared with 12 well-known correlations and it was seen that 4 of 12 were in good agreement with each other with the average deviation < 10%. The findings demonstrate that well-known correlations in fundamental sources can be used to predict the heat transfer coefficient of R-134a during its single phase flow in a multiport microchannel heat sink under turbulent regime.  相似文献   

13.
The two-phase pressure drop of the pure refrigerant HFC-134a during condensation inside a vertical tube-in-tube heat exchanger was investigated. The double tube test section was 0.5 m long with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube was constructed from smooth copper tubing of 8.1 mm inner diameter and 9.52 mm outer diameter. The test runs were performed at average condensing temperatures of 40–50 °C. The mass fluxes were between 260 and 515 kg m− 2 s− 1 and the heat fluxes between 11.3 and 55.3 kW m− 2. The quality of the refrigerant in the test section was calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section was directly measured by a differential pressure transducer. A new correlation for the two-phase friction factor of R134a flow is proposed by means of the equivalent Reynolds number model. The effects of heat flux, mass flux and condensation temperature on the pressure drop are also discussed.  相似文献   

14.
Flow separations occur in various engineering applications. Computational simulation by using standard k-ε turbulence model was performed to investigate numerically the characteristic of backward-facing step flow in a concentric configuration. This research is focused on the variation of Reynolds number, heat flux and step height in a fully developed turbulent air flow. The design consists of entrance tube, and inner and outer tubes at the test section. The inner tube is placed along the entrance tube at the test section with an outer tube to form annular conduit. The entrance tube diameter was varied to create step height, s of 18.5 mm. The Reynolds number was set between 17,050 and 44,545 and heat flux was set between 719 W/m2 and 2098 W/m2 respectively. It is observed that the higher Reynolds number with step flow contributes to the enhancement of heat transfer. The reattachment point for q = 719 W/m2 is observed at 0.542 m, which is the minimum surface temperature. The experimental data shows slightly lower distribution of surface temperature compared to simulation data. As for the same case in experimental result, the minimum surface temperature is obtained at 0.55 m. The difference between numerical and experimental result is 0.008 m. Finally, it can be inferred that utilizing the computational fluid dynamic package software, agreeable results could be obtained for the present research.  相似文献   

15.
An experimental investigation has been carried out to study the effect of twisted tape inserts on heat transfer enhancement and pressure drop in a horizontal tube during swirl flow boiling of R-134a. The test-evaporator was an electrically heated horizontal copper tube and twisted tapes with different twist ratios of 6, 9, 12 and 15 were inserted one by one. The data were acquired at the refrigerant mass velocities of 54, 86, 114 and 136 kg/s m2. The twisted tape inserts increases the boiling heat transfer coefficients and the pressure drop across the test-evaporator. An empirical correlation has also been developed to predict the swirl flow pressure drop in the test-evaporator.  相似文献   

16.
This paper presents the heat transfer coefficients and the pressure drop measured during HFC refrigerants 236fa, 134a and 410A saturated vapour condensation inside a brazed plate heat exchanger: the effects of saturation temperature (pressure), refrigerant mass flux and fluid properties are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature (pressure) and great sensitivity to refrigerant mass flux and fluid properties. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 20 kg/m2s that corresponds to an equivalent Reynolds number around 1600–1700. At low refrigerant mass flux (Gr < 20 kg/m2s) the heat transfer coefficients are not dependent on mass flux and are well predicted by the Nusselt [20] analysis for vertical surface: the condensation process is gravity controlled. For higher refrigerant mass flux (Gr > 20 kg/m2s) the heat transfer coefficients depend on mass flux and are well predicted by Akers et al. [21] equation: forced convection condensation occurs. In the forced convection condensation region the heat transfer coefficients show a 25–30% increase for a doubling of the refrigerant mass flux.The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on mass flux.HFC-410A shows heat transfer coefficients similar to HFC-134a and 10% higher than HFC-236fa together with frictional pressure drops 40-50% lower than HFC-134a and 50–60% lower than HFC-236fa.  相似文献   

17.
Experimental investigations were conducted to determine the condensation heat transfer and pressure drop of refrigerant R134a in annular helicoidal pipe at three inclination angles. The experiments were performed with the Reynolds number of R134a ranging from 60 to 200, and that of cooling water from 3600 to 22 000; temperatures of R134a at 30 °C and 35 °C, and cooling water at 16 °C, 20 °C and 24 °C. The experimental results indicated that the refrigerant Nusselt number was larger at lower refrigerant saturation temperature, and would increase with the increase of mass flow rates of refrigerant and cooling water. It was found that the refrigerant heat transfer coefficient of annular helicoidal pipe could be two times larger than that of equivalent plain straight pipe when the refrigerant Reynolds number was larger than 140. Comparison with identical helicoidal pipe with opposite flow channel arrangement revealed that the refrigerant heat transfer rate was larger when the refrigerant was flowing in the annular section at the cooling water Reynolds number larger than 4000, but the pressure drop was always larger in this flow channel arrangement.  相似文献   

18.
An experimental investigation of electrohydrodynamic (EHD) augmentation of heat transfer for in-tube condensation of flowing refrigerant HFC-134a has been performed in a horizontal, single-pass, counter-current heat exchanger with a rod electrode placed in the centre of the tube. The effects of varying the mass flux (55 kg/m2 s  G  263 kg/m2 s), inlet quality (0.2  xin  0.83) and the level of applied voltage (0 kV  V  8 kV) are examined. The heat transfer coefficient was enhanced by a factor up to 3.2 times for applied voltage of 8 kV. The pressure drop was increased by a factor 1.5 at the same conditions of the maximum heat transfer enhancement. The improved heat transfer performance and pressure drop penalty are due to flow regime transition from stratified flow to annular flow as has been deduced from the surface temperature profiles along the top and bottom surfaces of the tube.  相似文献   

19.
Post-dryout heat transfer to high pressure water was investigated experimentally in vertical tubes and annuli containing various flow obstacles. The operational conditions during the experiments were as follows: mass flux from 500 to 1750 kg/m2 s, pressure from 5 to 9 MPa, inlet subcooling from 10 to 40 K and heat flux up to 1.5 MW/m2. Five different test sections were used in experiments: three annular test sections with inner diameter 12.7 mm and outer diameter 24.3 mm, containing cylindrical and grid flow obstacles in the upper part, and two tubular test sections with inner diameter 24.3 mm with and without pin flow obstacles. The heated length in all test sections was 3650 mm. The wall temperature was measured with 88 thermocouples located along the inner rod and the outer tube surfaces. Due to the presence of flow obstacles, only developing post-dryout heat transfer was observed. Selected post-dryout heat transfer correlations were compared to the experimental data. It has been concluded that all tested correlations predict significantly higher wall temperatures than those obtained in the present experiment. A simple correction function to the Saha model has been suggested which significantly improves the agreement between the correlation and the present data.  相似文献   

20.
This paper reports a study of heat transfer in the post-critical heat flux (post-CHF) regime under forced convective upflow conditions in a uniformly heated vertical tube of 12.7 mm internal diameter and 3 m length. Experiments were conducted with non-azeotropic ternary refrigerant mixture R-407C for reduced pressures ranging from 0.37 to 0.75, mass flux values from 1200 to 2000 kg/m2 s and heat flux from 50 to 80 kW/m2. Data shows a considerable effect of system pressure on the post-CHF heat transfer coefficient for specified mass and heat fluxes. The post-CHF heat transfer coefficients for R-407C are compared with three existing correlations which are found to over predict the current data. A modified correlation to represent the experimental data for R-407C is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号