首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this study, the stress intensity factors for any number of interface cracks are calculated for various spacings, elastic constants and number of cracks and the interaction effect of interface cracks is discussed. The problem is formulated as a system of singular integral equations on the basis of the body force method. In the numerical analysis, the unknown functions of the body force densities which satisfy the boundary conditions are expressed by the products of fundamental density functions and power series. Here, the fundamental density functions are chosen to express the stress field due to a single interface crack exactly. The accuracy of the present analysis is verified by comparing the present results with the results obtained by other researchers and examining the compliance with boundary conditions. The calculation shows that the present method gives rapidly converging numerical results for those problems as well as ordinary crack problems in homogeneous materials. The interaction effect of interface crack appears in a similar way to ordinary collinear cracks having the same geometrical condition and the maximum stress intensity factor is shown to be linearly related to the reciprocal of number of interface cracks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
薛雁  聂辉  冯文杰 《工程力学》2008,25(4):70-74
该文考察了磁电弹性功能梯度板的反平面问题。该板具有多个垂直于边界的共线裂纹。裂纹表面采用磁电不穿透或可穿透假设。应用积分变换和位错密度函数将问题化为柯西奇异积分方程求解。导出和分析了场强度因子和能量释放率。数值结果表明了载荷组合参数、材料梯度指数及裂纹构形对裂尖断裂行为的影响。  相似文献   

3.
A time-domain boundary integral equation method has been developed to calculate elastodynamic fields generated by the incidence of stress (or displacement) pulses on single cracks and systems of two collinear cracks. The system of boundary integral equations has been cast in a form which is amenable to solution by the boundary element method in conjunction with a time-stepping technique. Particular attention has been devoted to dynamic overshoots of the stress intensity factors. Elastodynamic stress intensity factors for pulse incidence on a single crack have been computed as function of time, and they have been compared with results of other authors. For collinear macrocrack-microcrack configurations the stress intensity factors at both tips of the macrocrack have been computed as functions of time for various values of the crack spacing and the relative size of the microcrack.  相似文献   

4.
An analytical approach to the Dugdale strip yield model for multiple site damage is presented by using the weight function method. Two example problems, an array of periodic collinear cracks in an infinite sheet and a coalesced center crack in a finite width panel, are analyzed by the closed-form weigh function; the effect of finite boundary is considered. Results are extensively verified against available analytical and numerical solutions. The capability of the closed-form weight function for the strip yield model analysis of multiple site damage is demonstrated.  相似文献   

5.
In this paper, a boundary integral equation formulation for anti-plane shear inhomogeneous medium is presented to study the interaction between the inhomogeneities and cracks. The proposed boundary integral equation formulation only contains out-of-plane interface displacements and out-of-plane discontinuous displacements over cracks. Numerical implementation is simple since the present formulation has considered the shear equilibrium condition over the interfaces between the matrix and inhomogeneities. Out-of-plane interface displacements and out-of-plane traction integral equations are collocated respectively on the matrix–inhomogeneity interfaces and on one side of the crack surface. Numerical examples are given to show the validity and numerical accuracy of the present method.  相似文献   

6.
In this paper, the dynamic interaction between multiple inclusions and cracks is studied by the time-domain boundary element method (TDBEM). To deal with this problem, two kinds of time-domain boundary integral equations together with the sub-region technique are applied. The cracked solid is divided into homogeneous and isotropic sub-regions bounded by the interfaces between the inclusions and the matrix. The non-hypersingular traction boundary integral equations are applied on the crack-surfaces; while the traditional displacement boundary integral equations are used on the interfaces and the exterior boundaries. In the numerical solution procedure, square-root shape functions are adopted for the crack-opening-displacements to describe the proper asymptotic behavior in the vicinity of the crack-tips. Numerical results for dynamic stress intensity factors are presented for various cases. The effects of the inclusion position, material combinations and multiple micro-cracks on the dynamic stress intensity factors are discussed.  相似文献   

7.
A frequency-domain boundary element method (BEM) is presented for non-synchronous crack interaction analysis in three-dimensional (3D), infinite, isotropic and linear elastic solids with multiple coplanar cracks. The cracks are subjected to non-synchronous time-harmonic crack-surface loading with contrast frequencies. Hypersingular frequency-domain traction boundary integral equations (BIEs) are applied to solve the boundary value problem. A collocation method is adopted for solving the BIEs numerically. The local square-root behavior of the crack-opening-displacements at the crack-front is taken into account in the present method. For two coplanar penny-shaped cracks of equal radius subjected to non-synchronous time-harmonic crack-surface loading, numerical results for the dynamic stress intensity factors are presented and discussed.  相似文献   

8.
This paper examines the interaction between coplanar square cracks by combining the moving least‐squares (MLS) approximation and the derived boundary integral equation (BIE). A new traction BIE involving only the Cauchy singular kernels is derived by applying integration by parts to the traditional boundary integral formulation. The new traction BIE can be directly applied to a crack surface and no displacement BIE is necessary because all crack boundary conditions (both upper and lower ones) are incorporated. A boundary element‐free method is then developed by combining the derived BIE and MLS approximation, in which the crack opening displacement is first expressed as the product of weight functions and the characteristic terms, and the unknown weight is approximated with the MLS approximation. The efficiency of the developed method is tested for isotropic and transversely isotropic media. The interaction between two and three coplanar square cracks in isotropic elastic body is numerically studied and the case of any number of coplanar square cracks is deduced and discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a method of numerical analysis for the problem of two collinear cracks in a finite, linearly elastic, isotropic plate and subjected to in plane forces.

The problem is treated imagining the plate with the two cracks draws in an unbounded region. Using the analytical solution of a point force applied to an infinite plate with two collinear cracks of equal length, the boundary conditions are written by superimposing the effect of interior loading upon the effect of concentrated loads applied on a curve parallel to the outer boundary. The boundary condition are satisfied in a least square sense.

Numerical example are given for square plates with inner or edge cracks. The accuracy is discussed.  相似文献   


10.
This study focuses on the application of boundary element methods for linear fracture mechanics of two-dimensional piezoelectric solids. A complete set of piezoelectric Green's functions, based on the extended Lekhnitskii's formalism and distributed dislocation modeling, are presented. Special Green's functions are obtained for an infinite medium containing a conducting crack or an impermeable crack. The numerical solution of the boundary integral equation and the computation of fracture parameters are discussed. The concept of crack closure integral is utilized to calculate energy release rates. Accuracy of the boundary element solutions is confirmed by comparing with analytical solutions reported in the literature. The present scheme can be applied to study complex cracks such as branched cracks, forked cracks and microcrack clusters.  相似文献   

11.
In this paper, the stress and the electric intensity factors of two parallel mode-I cracks or four parallel mode-I cracks in the piezoelectric materials were examined by means of the Schmidt method for the permeable electric boundary conditions. The present problem can be solved by using the Fourier transform and the technique of dual integral equation, in which the unknown variables are the jumps of displacements across the crack surfaces, not the dislocation density functions. To solve the dual integral equations, the displacement jumps are directly expanded in a series of Jacobi polynomials. Finally, the effects of the distance between two parallel cracks and the distance between two collinear cracks on the stress and the electric intensity factors in the piezoelectric materials are analyzed. These results can be used for the strength evaluation of the piezoelectric materials with multi-cracks.  相似文献   

12.
A meshless local Petrov-Galerkin method (MLPG) [[Atluri and Zhu (1998)] for the analysis of cracks in isotropic functionally graded materials is presented. The meshless method uses the moving least squares (MLS) to approximate the field unknowns. The shape function has not the Kronecker Delta properties for the trial-function-interpolation, and a direct interpolation method is adopted to impose essential boundary conditions. The MLPG method does not involve any domain and singular integrals to generate the global effective stiffness matrix if body force is ignored; it only involves a regular boundary integral. The material properties are smooth functions of spatial coordinates and two interaction integrals [Rao and Rahman (2003a,b)] are used for the fracture analysis. Two numerical examples including both mode-I and mixed-mode problems are presented to calculated the stress intensity factors (SIFs) by the proposed method. Example problems in functionally graded materials are presented and compared with available reference solutions. A good agreement obtained show that the proposed method possesses no numerical difficulties.  相似文献   

13.
The direct boundary integral equations method has been applied to analyze stresses in a fracture process zone (a crack bridged zone) and to calculate stress intensity factors module for structures with bridged interfacial cracks under mechanical loading. Bridged zones at interfacial cracks are considered as parts of these cracks with assumption that surfaces of interfacial cracks are connected by distributed spring-like bonds with given bond deformation law. For numerical analysis of piecewise structures with bridged interfacial cracks the multi-domain formulation of the boundary elements method is used. The stress intensity factors module evaluation is performed on the basis of displacements and stresses computed at nodal points of special quadratic boundary elements adjoined to a crack tip. The comparative study between the results obtained by the boundary elements method and the results obtained previously by the singular integral–differential equations method is performed and the validity of the presented numerical formulation is demonstrated. The new problem for a bridged circumferential crack between a cylindrical inclusion and a matrix in plate of finite size is also solved. Stresses distributions along the bridged zone and the stress intensity factors modulus dependencies versus the bridged zone length and bonds stiffness are presented and discussed for this problem.  相似文献   

14.
Summary This paper investigates the dynamic behavior of a bonded piezoelectric and elastic half space containing multiple interfacial collinear cracks subjected to transient electro-mechanical loads. Both the permeable and impermeable boundary conditions are examined and discussed. Based on the use of integral transform techniques, the problem is reduced to a set of singular integral equations, which can be solved using Chebyshev polynomial expansions. Numerical results are provided to show the effect of the geometry of interacting collinear cracks, the applied electric fields, and the electric boundary conditions along the crack faces on the resulting dynamic stress intensity and electric displacement intensity factors.  相似文献   

15.
This paper presents a novel approach for obtaining boundary integral equations of 2D anisotropic magnetoelectroelasticity. This approach is based on the holomorphy theorems and the Stroh formalism and allows developing of the integral equations for the aperiodic, singly and doubly periodic problems of magnetoelectroelasticity. Obtained equations contain the unknown discontinuities of displacement, electric and magnetic potentials and also traction, electric displacement and magnetic induction that allow adopting the existing boundary element procedures for their solution. Analytical solutions for systems of collinear permeable or impermeable cracks are obtained. Numerical boundary element solutions are obtained for the singly and doubly periodic sets of permeable and impermeable cracks in the magnetoelectroelastic medium and a half-plane. Comparison with analytical solutions and other available results validate the present formulations and numerical computation.  相似文献   

16.
An elastic orthotropic material containing a crack in Mode I is considered to formulate a new analytical model. The boundary conditions for the crack existence in the material lead to the solution of the homogeneous Riemann–Hilbert problems. The mathematical model was elaborated for a single and two collinear cracks of different lengths and distance for Mode I in order to investigate cracks interaction problem. Using the theory of Cauchy’s integral and the numerical analysis, the fields in the vicinity of the crack tips were determined.Finite Element Method was applied to compare the mathematical analytical solution and to determine the fields in the vicinity of the crack tips. The critical values of applied stress which caused cracks propagation were evaluated. The interaction of cracks in an orthotropic aramid-epoxy material was studied in details. Comparison of both approaches to crack propagation leads to the conclusion that the new analytical model is correct and can be applied to more complex cracks geometries, including inclined cracks.  相似文献   

17.
A hypersingular boundary integral formulation for calculating two dimensional elastic wave scattering from thin bodies and cracks is described. The boundary integral equation for surface displacement is combined with the hypersingular equation for surface traction. The difficult part in employing the traction equation, the derivation of analytical formulas for the hypersingular integral by means of a limit to the boundary, is easily handled by means of symbolic computation. In addition, the terms containing an integrable logarithmic singularity are treated by a straightforward numerical method, bypassing the use of Taylor series expansions. Example wave scattering calculations for cracks and thin ellipses are presented.  相似文献   

18.
A boundary element procedure is presented for calculating weight functions for three-dimensional cracks with a smooth front. The weight function for the particular point at the crack front is represented as a sum of regular and singular parts. The known weight function for a circular crack in an infinite body is used as the singular part. The boundary integral equation is formulated for the regular part of the weight function in the vicinity of considered crack front point and for the whole weight function for the rest of the body. A discretized form of the boundary integral equation is given. Some examples are provided to test the accuracy of the proposed procedure.  相似文献   

19.
At first, a hybrid boundary element method used for three-dimensional linear elastic fracture analysis is established on the basis of the first and the second kind of boundary integral equations. Then the concerned basic theories and numerical approaches including the discretization of boundary integral equations, the divisions of different boundary elements, and the procedures for the calculations of singular and hypersingular integrals are presented in detail. Finally, the stress intensity factors of surface cracks in finite thickness plates and cylindrical pressure vessels are computed by the proposed method. The numerical results show that the hybrid boundary element method has very high accuracy for the analysis of surface crack.  相似文献   

20.
A new mathematical model for lubricated elastic solids weakened by cracks is proposed. Surface and subsurface cracks are taken into account, and the interaction of lubricant with elastic solids within cavities of surface cracks is regarded as the most interesting aspect of the problem. The boundary conditions characterizing the behavior of lubricant within crack cavities such as pressure rise in crack cavities fully filled with lubricant as well as other boundary and additional conditions are derived. The problem is reduced to a system of integro-differential equations with nonlinear boundary conditions in the form of alternating equations and inequalities. A new iterative numerical method is developed for solution of the proposed problem. The method guarantees conservation of lubricant volumes trapped within closed crack cavities and allows for all three functions (normal and tangential displacement jumps and normal stress applied to crack faces) characterizing the problem solution to be determined simultaneously. Examples of numerical results for surface and subsurface cracks are presented and numerical and asymptotic results for small subsurface cracks are compared to each other. The numerical analysis indicates that depending on a surface crack orientation its normal stress intensity factor may be two or more orders of magnitude higher than the one for a similar subsurface one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号