首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal-stress problem of an infinite strip containing an infinite row of periodically distributed edge cracks normal to its edge is investigated. The surrounding temperature adjacent to the crack-containing edge is assumed to be cooled suddenly to simulate the thermo-shock condition. By the superposition principle, the formulation leads to a mixed-boundary-value problem, with the negating tractions derived from the thermal stresses of a crack-free infinite strip. An integral equation is obtained and solved numerically. The effect on the SIFs (stress-intensity factors) due to the presence of periodically distributed cracks in an infinite strip is delineated. The normalized SIFs increase as the stacking cracks separate, due to the reduction of the shielding effect. After a characteristic time period, the negating tractions along the crack faces become almost linear. The SIF solutions under the considered crack geometry are worked out in detail for the case of linear traction loading.  相似文献   

2.
A periodic array of cracks in an infinite functionally graded material under mechanical and/or thermal loading is investigated. Due to non-uniform heating or cooling, compressive stresses occur causing the crack surfaces to come into contact at a certain contact length. The mixed boundary value problem is reduced to a singular integral equation with the crack contact length as an additional unknown variable. Numerical results for stress intensity factors and the crack contact length are obtained as a function of crack spacing. Effect of the material non-homogeneity on the crack tip intensity factors is discussed. Some suggestions are made for the design of thermal resistive functionally graded materials.  相似文献   

3.
Using the fundamental solutions and the Somigliana identity of piezoelectric medium, the boundary integral equations are obtained for a conductive planar crack of arbitrary shape in three-dimensional transversely isotropic piezoelectric medium. The singular behaviors near the crack edge are studied by boundary integral equation approach, and the intensity factors are derived in terms of the displacement discontinuity and the electric displacement boundary value sum near the crack edge on crack faces. The boundary integral equations for two dimensional crack problems are deduced as a special case of infinite strip planar crack. Based on the analogy of the obtained boundary integral equations and those for cracks in conventional isotropic elastic material and for contact problem of half-space under the action of a rigid punch, an analysis method is proposed. As an example, the solution to conductive Griffith crack is derived.  相似文献   

4.
利用复变函数知识、半逆解法及待定系数法, 研究了压电复合材料的共线周期性裂纹问题, 给出了在电不可渗透边界条件下的应力、电位移、应力强度因子、电位移强度因子和机械应变能释放率的解析解。当裂纹间距趋于无穷时, 共线周期性裂纹退化为一条单裂纹, 得到了压电复合材料一条单裂纹的结果。通过数值算例讨论了共线周期性裂纹的裂纹长度、裂纹间距和机电载荷对机械应变能释放率的影响规律。结果表明, 机械应变能释放率随着共线周期性裂纹的裂纹长度、共线周期性裂纹的裂纹间距、机械载荷和正电场的增大而增大, 随着负电场的增大而减小。  相似文献   

5.
Periodic collinear edge hole cracks and arbitrary small cracks emanating from collinear holes, which are two typical multiple site damages occurred in the aircraft structures, are studied by using the weigh function method. An explicit closed form weight function for periodic edge hole cracks in an infinite sheet is obtained and further used to calculate the stress intensity factor and crack opening displacement for various loading cases. Compared to finite element method, the present weight function is accurate and highly efficient. The interactions of the holes and cracks on the stress intensity factor and crack opening displacement are quantitatively determined by using the present weight function. An approximate weight function method is also proposed for arbitrary small cracks emanating from multiple collinear holes. This method is very useful for calculating the stress intensity factor for arbitrary small cracks.  相似文献   

6.
A weight function approach is proposed to calculate the stress intensity factor and crack opening displacement for cracks emanating from a circular hole in an infinite sheet subjected to mixed modes load. The weight function for a pure mode II hole‐edge crack is given in this paper. The stress intensity factors for a mixed modes hole‐edge crack are obtained by using the present mode II weight function and existing mode I Green (weight) function for a hole‐edge crack. Without complex derivation, the weight functions for a single hole‐edge crack and a centre crack in infinite sheets are used to study 2 unequal‐length hole‐edge cracks. The stress intensity factor and crack opening displacement obtained from the present weight function method are compared well with available results from literature and finite element analysis. Compared with the alternative methods, the present weight function approach is simple, accurate, efficient, and versatile in calculating the stress intensity factor and crack opening displacement.  相似文献   

7.
The problem of a cracked, stiffened metallic sheet adhesively bonded by a composite patch is analyzed. The composite patch is assumed to be either an infinite orthotropic sheet or an infinite orthotropic strip normal to the crack. Due to the high stress concentration around the crack and on the interface, an elliptical disbond is assumed to exist around the crack. The crack is asymmetric with respect to the stiffener's locations as well as to the patch's center. The effect of thermal stresses in curing process is also considered. The fracture problem is solved by the displacement compatibility method, using the complex variable approach and the Fourier integral transform method.The problem is dealt with in two steps. First, starting with an uncracked, patched stiffened sheet, the stress at the prospective location of the crack is determined in a closed-form solution. The second step is to introduce a crack into the stiffened patched sheet. The multivalue of the analytical formulation is treated in detail to ensure proper implement in the computer. The results show that the effect of the stiffeners on the stress intensity factor is not significant for a crack fully covered by a patch.For the repairs by Boron/Epoxy patches, the difference in KI between the infinite sheet patch and the infinite strip model is only minor (less than 5 percent) in the absence of the curing thermal stresses and it becomes more pronounced when these stresses are taken into consideration. The stress intensity factor for a crack repaired by an infinite composite strip also can be estimated with a good or reasonable accuracy via a simplified analysis in which the patch is considered as an infinite strip in the first step and is treated as an infinite sheet in the second step of the solution procedure mentioned above.The latter simplified analysis is based on the approach originally proposed by Rose for a relatively simple repair configuration. For most cases, that approach seems to work well for the repair of a stiffened sheet by an infinite composite strip with the effects of thermal stresses and a disbond included. It should be emphasized that the present methodology can apply to the problem of a crack in a metallic stiffened sheet growing beyond the patch's boundary and also to the repairs by an infinite adhesively bonded composite strip parallel to the crack.  相似文献   

8.
This paper investigates the T-stress at crack tips in the periodic crack problem. Remote tension in the y-direction is applied to cracks with an arbitrary inclined angle. The original stress field can be considered a superposition of a uniform stress field and a perturbation stress field. The problem of evaluating the stresses in the perturbation field can be considered a superposition of many single crack problems. A Fredholm integral equation is suggested for the solution of the perturbation stress field. In the equation, the loading on the crack face is chosen as unknown quantity. Once the integral equation is solved, the stress intensity factors and the T-stress at the crack tip can be evaluated immediately. For solving the integral equation and evaluating stresses in the perturbation field, the remainder estimation technique is suggested for evaluating the influences on the central crack from infinite cracks. The technique can considerably improve convergence in computation. Many results for the stress intensity factors and the T-stresses in periodic cracks are presented. It is shown that the interaction is significant for the closer cracks.  相似文献   

9.
This paper considers the elastostatic plane problem of a finite strip. One end of the strip is perfectly bonded to a rigid support while the other is under the action of a uniform tensile load. Solution for the finite strip is obtained by considering an infinite strip containing a transverse rigid inclusion at the middle and two symmetrically located transverse cracks. The distance between the two cracks is equal to twice the length of the finite strip. In the limiting case when the rigid inclusion and the cracks approach the sides of the infinite strip, the region between one crack and the rigid inclusion becomes equivalent to the finite strip. Formulation of the problem is reduced to a system of three singular integral equations using the Fourier transforms. Numerical results for stresses and stress intensity factors are given in graphical form.  相似文献   

10.
The problem of two equal-length collinear cracks in an infinite sheet is treated using the weight function method. Exact weight functions for the inner and outer crack tips are derived based on the crack opening displacement solution for a reference load case. These weight functions are used to calculate stress intensity factors for different load cases, plastic zone sizes and crack tip opening displacements of the strip yield model. The approach is validated by the perfect agreement between the present strip yield model solutions and Collins and Cartwright’s analytical results based on the direct complex stress function formulation.  相似文献   

11.
This article presents a study on the plane thermoelasticity problem of an infinite orthotropic plate split by three coplanar cracks under the action of symmetrical heat flow. Using the technique of Fourier transforms, the related four-part mixed boundary value problems are reduced to two kinds of quadruple integral equations with cosine and sine kernels which are solved by use of finite Hilbert transformation. Closed form solutions to the temperature, thermal displacements and thermal stresses on the crack surfaces, and especially, the thermal stress intensity factors at crack tips are obtained for the case of uniform heat flow. The known solutions to the orthotropic thermoelasticity problem of uniform heat flow disturbed by a pair of coplanar cracks or a central planar crack can be deduced from the above results in a straightforward manner, including the solution of thermal stress intensity factors for the corresponding thermoelasticity problem with two collinear cracks which is another form of the solution, equivalent to that of series expressions obtained by the authors in a previous paper, but much simpler. It is found that extremely large magnitudes of stress singularity may occur as the distance between two adjacent cracks approaches zero.  相似文献   

12.
Dynamic stresses around three cracks in an infinite elastic plate have been solved. Two cracks, which are small and equal, are situated ahead of a large crack so as to allow for geometrical symmetry. Time-harmonic normal traction acts on each surface of these cracks. To solve the problem, two solutions are combined. One of them is a solution for a crack in an infinite plate and another is that for two collinear cracks in an infinite plate. The Schmidt method is used to satisfy the boundary conditions on the cracks' surfaces with use of the combined solutions. Stress intensity factors are calculated numerically for some of these crack configurations.  相似文献   

13.
A mixed-mode thermoelectroelastic fracture problem of a functionally graded piezoelectric material strip containing two parallel axisymmetric cracks, such as penny-shaped or annular cracks, is considered in this study. It is assumed that the thermoelectroelastic properties of the strip vary continuously along the thickness of the strip and that the strip is under thermal loading. The crack faces are supposed to be insulated thermally and electrically. Using integral transform techniques, the problem is reduced to that of solving two systems of singular integral equations. Systematic numerical calculations are carried out, and the variations of the stress and electric displacement intensity factors are plotted for various values of dimensionless parameters representing the crack size, the crack location and the material non-homogeneity.  相似文献   

14.
Thermal fatigue striping damage may be caused when incompletely mixed hot and cold fluid streams pass over the surface of a component or structure containing a defect. Stress intensity factor (SIF) fluctuations are developed in response to the surface temperature fluctuations. An existing methodology for the analysis of striping damage in geometries containing a single edge‐crack geometry is extended to such an analysis of multiple edge cracks. SIFs are calculated as functions of crack depth, when an edge‐cracked plate and semi‐infinite solid, each containing multiple cracks, are subjected to thermal striping. The effect of various restraint conditions and striping frequencies on the SIF values for a stainless steel plate is examined. The degree of conservatism is shown when an assessment of thermal fatigue striping damage is based on a single, rather than multiple, crack analysis. Accurate curve fits are developed resulting in practical weight functions for an edge‐cracked plate and semi‐infinite solid.  相似文献   

15.
This paper gives an analysis of the distribution of thermal stresses in a sphere which is bonded to an infinite elastic medium. The thermal and the elastic properties of the sphere and the elastic infinite medium are assumed to be different. The penny-shaped crack lies on the diametral plane of the sphere and the centre of the crack is the centre of the sphere. By making a suitable representation of the temperature function, the heat conduction problem is reduced to the solution of a Fredholm integral equation of the second kind. Using suitable solution of the thermoelastic displacement differential equation, the problem is then reduced to the solution of a Fredholm integral equation, in which the solution of the earlier integral equation arising from heat conduction problem occurs as a known function. Numerical solutions of these two Fredholm integral equations are obtained. These solutions are used to evaluate numerical values for the stress intensity factors. These values are displayed graphically.  相似文献   

16.
The problem of two edge cracks of finite length, situated symmetrically in an orthotropic infinite strip of finite thickness 2 h, under normal point loading has been discussed. The displacements and stresses in plane strain conditions are expressed in terms of two harmonic functions. The problem is addressed by seeking the solution of a pair of simultaneous integral equations with Cauchy type singularities solved by finite Hilbert Transform technique. For large h, analytical expression for the stress intensity factor at the crack tip is obtained.  相似文献   

17.
In this paper, the Fourier integral transform–singular integral equation method is presented for the problem of a periodic array of cracks in a functionally graded piezoelectric strip bonded to a different functionally graded piezoelectric material. The properties of two materials, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The crack surface condition is assumed to be electrically impermeable or permeable. The mixed boundary value problem is reduced to a singular integral equation over crack by applying the Fourier transform and the singular integral equation is solved numerically by using the Lobatto–Chebyshev integration technique. The analytic expressions of the stress intensity factors and the electric displacement intensity factors are derived. The effects of the loading parameter λ, material constants and the geometry parameters on the stress intensity factor, the energy release ratio and the energy density factor are studied.  相似文献   

18.
The symmetrical problem of two transverse cracks in an elastic strip with reinforced surfaces is formulated in terms of a singular integral equation. The special cases of one central crack or two edge cracks are discussed. Numerical methods for solving the problems with internal cracks are outlined and stress intensity factors are presented for various geometries and degrees of surface reinforcement.  相似文献   

19.
J. Y. Huang 《Acta Mechanica》1996,115(1-4):67-78
Summary The interaction of time harmonic antiplane shear waves with nonplanar cracks embedded in an elastic half-space is studied. Based on the qualitatively similar features of crack and dislocation, with the aid of image method, the problem can be formulated in terms of a system of singular integral equations for the density functions and phase lags of vibrating screw dislocations. The integral equations, with the dominant singular part of Hadamard's type, can be solved by Galerkin's numerical scheme. Resonance vibrations of the layer between the cracks and the free surface are observed, which substantially give rise to high elevation of local stresses. The calculations show that near-field stresses due to scattering by a single crack and two cracks are quite different. The interaction between two cracks is discussed in detail. Furthermore, by assuming one of the crack tips to be nearly in contact with the free surface, the problem can be regarded as the diffraction of elastic waves by edge cracks. Numerical results are presented for the elastodynamic stress intensity factors as a function of the wave number, the incident angle, and the relative position of the cracks and the free surface.  相似文献   

20.
Stress intensity factors and crack opening displacements are presented for infinite pairs of surface cracks in plates subjected to remote tension by using the three dimensional weight function method developed in [7,8]. A wide range of configuration parameters is considered. The results compare very well with double edge cracks as crack aspect ratio tends to zero; with collinear cracks as it tends to infinity; with a pair of surface cracks in a wide plate when the ratio of crack length to plate width is small; and with a single surface crack in large plates when both the ratios of crack length to plate width and crack depth to plate thickness are small. Also illustrated is the significant difference between a single surface crack and the surface cracks in pairs when the ratio of crack depth to plate thickness is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号