首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
Tandem Differential Mobility Analyzers (TDMA) were used along with TEM analysis to determine agglomerate volume, scaling exponents for both mass-mobility diameter (Dfm) and friction coefficient-number of primary particles (η) for the mobility diameter in the range 30–300 nm. The larger agglomerates with dm=250 and 300 nm require a temperature of 800 °C and a sintering time of 0.7 s to form a spherical shape compared to 600 °C for a mobility diameter of 150 nm. It is shown that the 3% decrease in mobility size of the 250 and 300 nm agglomerates with increasing sintering temperature (600–800 °C) is a result of a morphology change from an ellipsoid to a sphere during the sintering process. The effect of sublimation on the sintered particle size is negligible with less than a 0.5% decrease in diameter for a 300 nm mobility diameter agglomerate at 800 °C. The TDMA results show that Dfm is not dependent on mobility size range and that η is dependent on the size range. Both results are counter to predictions based on free molecular models. These results confirm previous results obtained using a DMA together with an aerosol particle mass analyzer (APM) and are shown to have about a factor of two smaller uncertainty. It is also experimentally demonstrated that the agglomerate particles with dm=300 nm are partially aligned in the electric field of DMA. The correction for a random orientation results in a significant decrease in Dfm by 3.5% and a significant increase in η by 3%.  相似文献   

2.
A fast integrated mobility spectrometer with wide size range (WSR-FIMS) is described. The WSR-FIMS greatly enhances the dynamic size range of the original FIMS [Kulkarni, P., & Wang, J. (2006a). New fast integrated mobility spectrometer for real-time measurement of aerosol size distribution—I: Concept and theory. Journal of Aerosol Science, 37, 1303—1325; Kulkarni, P., & Wang, J. (2006b). New fast integrated mobility spectrometer for real-time measurement of aerosol size distribution—II: Design, calibration, and performance characterization. Journal of Aerosol Science, 37, 1326—1339] by employing a non-uniform electric field. The strength of this electric field varies over three orders of magnitude along the width of the separator, allowing particles of a much wider size range to be classified and measured simultaneously. A theoretical framework is developed to derive the transfer function, resolution, and transmission efficiency of the WSR-FIMS. Two representative operation configurations are simulated, and the results show the WSR-FIMS can simultaneously measure particles ranging from 10 to 1470 nm, therefore greatly reducing the measurement time from minutes required by scanning mobility particle sizer (SMPS) to 1 s or less. The WSR-FIMS also has a higher size resolution than typical SMPS over most of its measurement size range. For typical ambient aerosols, the simulations show that 1 s measurements using the WSR-FIMS provide good counting statistics.  相似文献   

3.
The diffusional deposition efficiency of monomobile, singly charged nanoaerosols onto electrically grounded metal wire mesh was measured on the basis of electrometer current data. The overall experimental uncertainty was of the order of 1% of measured penetration and 1% of measured particle mobility. The aerosol was either WOx produced by evaporation/condensation and classified with a special high flow DMA into mobility classes between 1.2 and 8 nm—or electrosprayed THAB ions with a mobility equivalent diameter of 1.44 or 1.76 nm for the monomer and dimer, respectively.The experimental data were compared first to a model by Cheng and Yeh for diffusion deposition onto wire screens. Very good agreement was found down to approximately 3–4 nm, however, with a progressive deviation toward lower than predicted penetration values (predicted by pure diffusion theory (over ?25% at 1.2 nm)). The WOx data agree very well with penetration data obtained for THAB monomer and dimer. For the larger size range above 4 nm, our data are also in excellent agreement with recent data by Thomas et al. It can be concluded that, no thermal rebound effect exists for charged particles in the electrical mobility diameter size range down to 1.2 nm. Lower than predicted penetrations measured below about 3 nm are most likely due to a small contribution by the image charge effect coupled with diffusion. Comparisons between the electrical and diffusional mobility of THAB ions show that the monomer is split into at least two different electrical mobility peaks, however, with the same diffusion coefficient, thus indicating the possible existence of structural isomers for the THAB monomer.  相似文献   

4.
The charge distribution on ultrafine aerosol particles in the size range below 35 nm has been measured using a corona-based unipolar charger, in which ion generation and aerosol charging take place simultaneously in the region around a sharp-point discharge electrode. The mean number of charges per particle predicted by Fuchs’ diffusion charging theory is in relatively good agreement with the experimental results, and this implies that diffusion charging is the predominant mechanism in spite that the electric field in the charging region is very high. Since a steady state is unattainable in unipolar charging, the charge distribution depends on the geometry and operating conditions of each particular charger. When the present device operates under the conditions (nt-product) which yield the maximum charging efficiency, double charge appears on particles with diameter as small as 15 nm. At larger values of nt, 32 nm particles can acquire up to five charges. The critical particle diameter above which multiple charging occurs is about four times smaller than for bipolar radioactive chargers. In order to use corona charging in aerosol particle size measurement by electrical methods, the required mobility data inversion is thus straightforward for particle diameter below about 15 nm, but becomes quite complex for larger sizes.  相似文献   

5.
The surface and overall collection efficiencies of capillary pore membrane filters were measured for sub-micrometer particles. Collection efficiencies were derived from the surface loadings of particles on filters measured by scanning electron microscopy and from airborne particle concentrations measured with a scanning mobility particle sizer. Tests used filters with nominal pore diameters of 0.4 and 0.8 μm and face velocities of 3.7 and 18.4 cm/s. Surface collection efficiencies were below 100% for particles smaller than 316 nm and below 55% for particles smaller than 100 nm. Overall collection efficiencies reached as low as 45% for 70 nm particles. For nanoparticles, collection efficiencies overall were substantially higher than those to the filter surface, indicating that deposition occurs to a large extent inside the filter pores. These results underscore the need to account for surface collection efficiency when deriving airborne concentrations from microscopic analysis of nanoparticles on capillary pore membrane filters.  相似文献   

6.
Diffusion charging-based surface area for spherical particles was measured and compared with geometric surface area in the submicrometer size ranging from 100 to 900 nm. Spherical aerosol particles (polystyrene latex particles (PSL) and droplets of diethylhexyl sebacate (DEHS)) were generated by electrosprays for 100–600 nm particles and by a condensation generator for 700–900 nm particles. Two commercially available diffusion chargers (DCs) (DC2000CE, Ecochem, USA; LQ1-DC, Matter Engineering, Switzerland) were challenged with monodisperse uncharged spherical aerosols. Results showed that the surface areas measured by the two DCs were proportional to mobility diameter to power 1.22 and 1.38, respectively, in the size range from 100 to 900 nm. Comparison of the DC-based surface area with theoretical active surface area resulted in reasonable agreement within ±30%, indicating that the DCs underestimate geometric surface area of particles. The deviation of the DC-based surface area from the geometric surface area was quantitatively measured and was found to be up to 94% in the size range studied. Three types of aerosol particles were used to validate the correction of the DC deviation from the geometric surface area for particles larger than 100 nm based on the fit obtained for spherical particles in this study: spherical silver particles, carbon nanofibers, and titanium dioxide agglomerates. Comparison of the corrected DC-based surface area to Brunauer–Emmett–Teller (BET)-measured surface area indicated that the DC surface area reasonably agrees with the BET value for the particles tested except carbon nanofibers with 300 nm modal diameter.  相似文献   

7.
A miniaturized version of an isopotential nano-differential mobility analyzer (DMA) [Labowsky, M., & Fernández de la Mora, J. (2006). Novel ion mobility analyzers and filters. Journal of Aerosol Science, 37, 340–362] has been tested experimentally and simulated by means of the commercial code COMSOL® to take into account Brownian diffusion. Compared with the prototype tested by [Martínez-Lozano, P., & Fernández de la Mora, J. (2006). Resolution improvements of a nano-DMA operating transonically. Journal of Aerosol Science, 37, 500–512.] this model is half the size and weights 920 g. Resolution, defined as the inverse of the relative full width at half height (FWHH), has been improved by a 50%, attaining a maximum resolution of 75 operating at a Reynolds number (Re) of ~47,000, measuring ions of equivalent mobility diameter ~1 nm. The maximum diameter theoretically measurable by this DMA is 15 nm. The predictions of the numerical simulations are in reasonable agreement with experiments with respect to resolution and the device constant, which provides an estimation of the measurable size range. The model suggests future approaches to improve resolution and to extend the measurable size range.  相似文献   

8.
Performance of a long differential mobility analyzer (LDMA) in measurements of nanoparticles was evaluated experimentally and numerically. In the evaluation of the LDMA measurements, silver particles in a size range of 5–30 nm were used under an increased flow rate. The numerical calculation method was used for calculating the particle trajectory in the LDMA, and the results were used for a comparison with Stolzenburg's transfer function. Using the CFD method, the flow around the aerosol inlet slit was analyzed, and the resulting particle mobility distribution was compared with that for an ideal flow. The resulting flow effect on the penetration efficiency caused by the inlet and exit slits were negligible when a well-designed system was used. The experimental measurements of mobility distributions were in good agreement with the theoretical prediction of particle size ranges over 10 nm, but some discrepancies were observed when particle size ranges were below 10 nm in size. The numerical calculation estimated the discrepancy found below the 10 nm particle size ranges.  相似文献   

9.
It is important to develop a simple and fast method for measuring the sizes of submicron particles in both laboratories and fields. In our previous studies, Park, An, and Hwang [(2007). Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution. Journal of Aerosol Science, 38, 420–430] and Park, Kim, An, and Hwang [(2007). Real-time measurement of submicron aerosol particles having a log-normal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger. Journal of Aerosol Science, 38, 1240–245], we introduced methodologies that our lab made unipolar charger could lead to detection times of under 5 s in conjunction with an electrometer and a condensation particle counter (CPC), and under 3 s with two electrometers.However, both methodologies require an appropriate assumption of the geometric standard deviation of particle sizes. In this paper, we introduce a methodology for determining the geometric standard deviation of particle sizes as well as the geometric mean diameter and the total number concentration of particles. For this purpose, a diffusion charger that consisted of discharge zone, mixing and charging zone, and three flow channels for obtaining three different residence times and average charges of particles in the channels, was designed and tested. For determining the average particle charge, various methods including theoretical calculations and the tandem differential mobility analyzer (TDMA) method were used. The results obtained from the different methods agreed well with each other. To compare the size distribution with the data that were measured through a scanning mobility particle sizer (SMPS), sodium chloride (NaCl) particles were used. The estimated results by using a data inversion algorithm were less than those measured by SMPS by around 22% for the total number concentration and 10% for both the geometric mean diameter and the geometric standard deviation. Furthermore, the detection time was under 3 s.  相似文献   

10.
Bipolar diffusion charging characteristics of airborne single-wall carbon nanotube (SWCNT) agglomerates were investigated in the mobility diameter range of 100–1000 nm. Neutral fractions of three types of SWCNT aerosols following bipolar charge equilibrium in a radioactive source were experimentally measured to infer their electrical charging characteristics. Significant deviation from Boltzmann and Fuchs stationary charge equilibrium was observed, with neutral fractions of SWCNT particles lower by 30–53% compared to that of spherical particles of the same mobility. Particles with mobility diameter larger than 400 nm showed high electrical charging efficiencies compared to that of mobility-equivalent spherical particles. Higher charging efficiencies of SWCNT particles were attributed to their higher electrical capacitance resulting from complex nonspherical morphologies. Numerical calculations using idealized fiber geometries confirmed the qualitative trend in the experimental data. The electrical capacitance of nanotubes particles deduced from experimentally measured neutral fractions were also found to be higher by a factor ranging from 1.6 to 4.6 compared to that of mobility-equivalent spherical particles, indicating high charge carrying capacity. The charging-equivalent diameters of nanotube particles were computed and were found to be higher than their mobility diameter by a factor of 2.85–4.34.  相似文献   

11.
In aerosol research and applications, a differential mobility analyzer (DMA) is now considered the standard tool for sizing and classifying monodisperse particles in the sub-micrometer and nanometer size ranges. However, DMA application at the pilot or industrial production scale remains infeasible because of the low mass throughput. A simple way to scale up DMA operation is to use multiple DMA columns. The manufacture and maintenance costs of existing DMAs, however, limit such a scale-up. A cost-effective DMA column (named cDMA) has thus been developed in this work to address the above issue. To reduce its manufacturing cost, the prototype was constructed using parts requiring little machining. The cDMA column was also designed for easy maintenance and easy variation of the classification length for any application-specified size range. In this study, prototypes with two particle classification lengths, 1.75 and 4.50 cm, were constructed and their performance was experimentally evaluated at sheath-to-aerosol flowrate ratios of 5:1, 10:1, and 15:1 via the tandem DMA (TDMA) technique. It was concluded that both prototype cDMAs, operated at a sheath/aerosol flowrate ratio less than 15:1 and with a polydisperse aerosol flowrate of 1.0 lpm, achieved sizing resolution comparable to that offered by Nano-DMA. The longer cDMA had comparable transmission efficiency to that of Nano-DMA, and the shorter cDMA exceeded the performance of Nano-DMA. Hence, the cDMA with the shorter (1.75 cm) classification length is better suited for the characterization of macromolecular samples.  相似文献   

12.
Nano-sized gadolinium doped ceria (GDC) powders were successfully synthesized by aerosol flame deposition (AFD) with two different atomization methods; ultrasonic and electrostatic atomization. The effect of the atomization method on the size and morphology of GDC particles were investigated. It was observed that the diameter range of the GDC small primary particles synthesized by the ultrasonic atomization method was 10–50 nm while with the electrostatic method was 5–25 nm. In addition, the size of primary large particle found to be decreased from 200 nm to 50 nm with increasing electric field up to 15 kV. The GDC powder synthesized by the electrostatic atomization exhibited reduced crystallite size, particle size, and similar electrical conductivity compared to GDC powder synthesized by ultrasonic atomization. This work demonstrated the benefits of the electrostatic atomization for producing smaller-sized GDC nanopowders for the application in intermediate temperature solid oxide fuel cells.  相似文献   

13.
《Ceramics International》2017,43(2):1895-1903
This paper examined theoretically and experimentally packing behavior, sintering behavior and compressive mechanical properties of sintered bodies of the bimodal particle size system of 80 vol% large particles (351 nm diameter)–20 vol% small particles (156 nm diameter). The increased packing density as compared with the mono size system was explained by the packing of small particles in 6-coordinated pore spaces among large particles owing to the similar size relation between 6-coordinated spherical pore and small particle. The sintering between adjacent large particles dominated the whole shrinkage of the powder compact of the bimodal particle size system. However, the bimodal particle size system has a high grain growth rate because of the different curvatures of adjacent small and large particles. The derived theoretical equations for the compressive strengths of both mono size system and bimodal particle size system suggest that the increase in the grain boundary area and relative density by sintering dominate the compressive strength of a sintered porous alumina. The experimental compressive strengths were well explained by the proposed theoretical models. The strength of the bimodal particle size system was high at low sintering temperatures but was low at high sintering temperatures as compared with that of mono size system of large particles. This was explained by mainly the change of grain boundary area with grain growth. The stress–strain relationship of the bimodal particle size system showed an unique pseudo-ductile property. This was well explained by the curved inside stress distribution along the sample height. The inside stress decreases toward the bottom layer. The fracture of one layer of sintered grains over the top surface proceeds continuously with compressive time along the sample height when an applied stress reaches the critical fracture strength.  相似文献   

14.
Submicron particles were produced by rapid expansion of supercritical solution into air (RESS) or an aqueous surfactant solution (RESSAS) to minimize particle growth and to prevent particle agglomeration. Thereby the effect of process conditions on the size of the particles precipitated was investigated. The obtained product was evaluated by measuring particle size by 3-wavelength extinction measurements, dynamic light scattering, specific surface areas by nitrogen gas adsorption, melting behaviour by differential scanning calorimetry, particle morphology by X-ray diffraction, scanning electron micrographs (SEM), and drug loading by high performance liquid chromatography.Prior to the particle formation experiments, the melting temperature of Salicylic acid under CO2 pressure and the solubility of Salicylic acid in CO2 were measured. The size of Salicylic acid particles produced via RESS decreased from 230 to 130 nm as the pre-expansion temperature decreased from 388 to 328 K and the specific surface area of the micronized particles was found to be up to 60 times higher than that of the unprocessed material. RESSAS experiments demonstrate that in 1 wt.% Tween 80 solutions Salicylic acid concentrations of 4.6 g/dm3 could be stabilized with particle diameters in the range of 180 nm. Additional experiments show that Ibuprofen nanoparticles with an average size of 80 nm and a drug concentration of 2.4 g/dm3 could be stabilized in 1 wt.% Tween® 80 solutions. The use of a SDS solution instead of Tween® 80 results in a stable aqueous suspension of phytosterol nanoparticles, where the average particle size is 50 nm at a drug concentration of 5.6 g/dm3.  相似文献   

15.
The aim of this study was to determine and model efficiency during the filtration of a liquid aerosol through a fibrous filter. A series of experiments demonstrated that liquid particle filtration is different from solid particle filtration in that a drainage state appears, characterized by a constant pressure drop at the end of filter clogging. Moreover, during filter clogging, the number efficiency presents a minimum level for particles close to 100 nm in diameter (the most penetrating particle size). The results also reveal that during filter clogging there is a decrease in the medium's performance for particles smaller than 100 nm and an increase in efficiency for particles with a diameter >200 nm. Both effects are induced by the amount of liquid collected in the medium. Finally, a model is proposed to describe filter efficiency during clogging with a liquid aerosol.  相似文献   

16.
Filter-based absorption photometers have been widely used to measure mass concentrations of black carbon (BC) by measurement of the absorption coefficient of BC. In these techniques, correction for the effect of multiple scattering by the filter medium is necessary, even if only BC particles are extracted by evaporating co-existing volatile compounds using a heated inlet. The correction depends on particle size, because it varies with the aerosol penetration depth into the filter. The size dependence has not, however, been taken into account in previous studies. For the first time, we quantify the particle size dependence of the sensitivities of two filter-based photometers, PSAP and COSMOS, using mono-disperse nigrosin particles, which were generated by the combination of a differential mobility analyzer and an aerosol particle mass analyzer. At diameters smaller than 200 nm, the absorption coefficients measured by PSAP and COSMOS were much larger than those calculated by Mie theory. The size-dependent correction factors for PSAP and COSMOS are determined by comparing the observed absorption coefficients at a flow rate of 0.7 standard liter per minute with those calculated by Mie theory. The correction factors to the mass absorption cross-section are also estimated for typical size distributions of ambient black carbon particles. The new factors reduce the mass absorption cross-sections measured by PSAP and COSMOS by 28–36% for typical ambient black carbon particles observed with an inlet heated to 400 °C.  相似文献   

17.
The formation and growth of fresh atmospheric aerosol particles was investigated using a condensation particle counter battery (CPCB). This instrument is a matrix of four separate CPCs, which differ in the combination of both cut-off size and working liquid (water; n-butanol). In a first step, the CPC counting efficiencies and cut-off sizes were carefully characterised under laboratory conditions for different condensing vapours, temperature differences between condenser and saturator, and test aerosol types. In addition, the activation process was described theoretically, and modelled numerically for the given CPC configurations. These results confirmed that water-soluble and water-insoluble as well as butanol-soluble and butanol-insoluble aerosol particles may be discriminated in the CPCB through different activation diameters. Therefore, the CPCB represents a novel tool to infer information on the chemical composition of aerosol particles between 2 and 20 nm. To test the applicability of the CPCB under field conditions, the CPCB was operated at a rural background station in Finland (Hyytiälä) in April and May 2005. The results indicate that growing nucleation mode particles were water-soluble both at 3 and 11 nm.  相似文献   

18.
《Journal of aerosol science》2007,38(11):1119-1128
We are developing aerosol generating and processing methods for X-ray analyses of nanoscale materials using conventional synchrotron radiation sources and using the newly operational soft X-ray free-electron laser in Hamburg (FLASH) at the Deutsches Elektronen Synchrotron. Charge-reduced electrospray, differential mobility analysis and an electrostatic precipitator were used to prepare samples consisting of size-monodisperse spherical nanoparticles deposited on 20 nm thick silicon nitride foils supported by silicon frames. Ninety-seven and 102 nm diameter spheres were selected from a broader distribution of 98 nm spheres using differential mobility. We measured the size distribution of the spheres using forward scattering from 1.65 nm light at the Advanced Light Source (ALS) in Lawrence Berkeley National Laboratory and scanning electron microscopy (SEM). The full-width half maximum (FWHM) of the size distribution of the size-selected spheres was as narrow as 5.4 nm when measured by SEM, as compared to 16 nm for the non-size-selected distribution. Forward scattering measurements of the 97 nm diameter size-selected spheres fit a size distribution with a FWHM of 4 nm and allowed us to validate the methodology for use in future diffraction imaging experiments at FLASH.  相似文献   

19.
A combination of a differential mobility analyzer (DMA) and aerosol particle mass analyzer (APM) is used to measure the mass of NIST Standard Reference Materials (SRM®) PSL spheres with 60 and 100 nm nominal diameter, and NIST traceable 300 nm PSL spheres. The calibration PSL spheres were previously characterized by modal diameter and spread in particle size. We used the DMA to separate the particles with modal diameter in a narrow mobility diameter range. The mass of the separated particles is measured using the APM. The measured mass is converted to diameter using a specific density of 1.05. We found that there was good agreement between our measurements and calibration modal diameter. The measured average modal diameters are 59.23 and 101.2 nm for nominal diameters of 60 and 100 nm (calibration modal diameter: 60.39 and 100.7 nm) PSL spheres, respectively. The repeatability uncertainty of these measurements is reported. For 300 nm, the measured diameter was 305.5 nm, which is an agreement with calibration diameter within 1.8%.

The effect of spread in particle size on the APM transfer function is investigated. Two sources of the spread in “mono-dispersed” particle size distributions are discussed: (a) spread due to the triangular DMA transfer function, and (b) spread in the calibration particle size. The APM response function is calculated numerically with parabolic flow through the APM and diffusion broadening. As expected from theory, the calculated APM response function and measured data followed a similar trend with respect to APM voltage. However, the theoretical APM transfer function is narrower than the measured APM response.  相似文献   

20.
In a recent paper in this journal, Rudyak, Dubtsov, and Baklanov (2009) presented results of measurements of the penetration of nanoparticles with diameters from 3.5 to 84 nm at temperatures from ~300 to 600 K through a set of wire screens, from which they inferred diffusion coefficients. They argued that the formulation typically used for C, the Cunningham correction that accounts for non-continuum effects on the diffusion of nanoparticles, is not valid for temperatures greater than ~300 K, and they proposed a modification of this formulation which depends on both temperature and particle size. It is shown here that this modification produces unphysical results in that it yields negative values of the momentum accommodation coefficient. A likely reason for their results is that they used a polydisperse size distribution, for which the main contribution to the measured penetration would be from particles at sizes far from those attributed to them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号