首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates flow boiling of water in microchannels with a hydraulic diameter of 227 μm possessing 7.5 μm wide reentrant cavities on the sidewalls. Average two-phase heat transfer coefficients and CHF conditions have been obtained over a range of effective heat fluxes (28–445 W/cm2) and mass velocities (41–302 kg/m2 s). High Boiling number and Reynolds number have been found to promote convective boiling, while Nucleate Boiling dominated at low Reynolds number and Boiling number. A criterion for the transition between nucleate and convective boiling has been provided. Existing correlations did not provide satisfactory agreement with the heat transfer coefficient but did predict CHF conditions well.  相似文献   

2.
Post-dryout heat transfer to high pressure water was investigated experimentally in vertical tubes and annuli containing various flow obstacles. The operational conditions during the experiments were as follows: mass flux from 500 to 1750 kg/m2 s, pressure from 5 to 9 MPa, inlet subcooling from 10 to 40 K and heat flux up to 1.5 MW/m2. Five different test sections were used in experiments: three annular test sections with inner diameter 12.7 mm and outer diameter 24.3 mm, containing cylindrical and grid flow obstacles in the upper part, and two tubular test sections with inner diameter 24.3 mm with and without pin flow obstacles. The heated length in all test sections was 3650 mm. The wall temperature was measured with 88 thermocouples located along the inner rod and the outer tube surfaces. Due to the presence of flow obstacles, only developing post-dryout heat transfer was observed. Selected post-dryout heat transfer correlations were compared to the experimental data. It has been concluded that all tested correlations predict significantly higher wall temperatures than those obtained in the present experiment. A simple correction function to the Saha model has been suggested which significantly improves the agreement between the correlation and the present data.  相似文献   

3.
In view of practical significance of a correlation of critical heat flux (CHF) in the aspects of engineering design and prediction, this study is aiming at evaluation of existing CHF correlations for flow boiling of water with available databases taken from small-diameter tubes, and then development of a new, simple CHF correlation. Available CHF databases in the literature for flow boiling of water in small-diameter tubes (0.33 < Dh < 6.22 mm) are collected, covering wide parametric ranges. Three correlations by Bowring, Katto and Shah are evaluated with the CHF data for saturated flow boiling, and three correlations by Inasaka–Nariai, Celata et al. and Hall–Mudawar evaluated with the CHF data for subcooled flow boiling. The Hall–Mudawar correlation and the Shah correlation seem to be the most reliable tools for CHF prediction in the subcooled and saturated flow boiling regions, respectively. In order to avoid the defect of predictive discontinuities often encountered when applying previous correlations, a simple, nondimensional, inlet conditions dependent CHF correlation for saturated flow boiling has been formulated. Its functional form is determined by the application of the artificial neural network and parametric trend analyses to the collected database. Superiority of this correlation has been verified by the database. The new correlation has a mean deviation of 16.8% for this collected databank, smallest among all tested correlations. Compared to many inordinately complex correlations, this new correlation consists only of a single equation.  相似文献   

4.
Experimental studies on critical heat flux (CHF) have been conducted in a uniformly heated vertical tube of 12.7 mm internal diameter and 3 m length at different reduced pressures ranging from 0.24 to 0.99 with R-134a as the working fluid. The onset of CHF was determined by the sudden rise in the wall temperature of the electrically heated tube. Experiments were performed over a wide range of parameters: mass flux values from 200 to 2000 kg/m2 s, pressure from 10 to 39.7 bars and heat flux from 2 to 80 kW/m2 and exit quality from 0.17 to 0.94. The results show considerably lower critical heat flux at high pressures. Well known CHF prediction methods, such as the look-up table and correlations of earlier workers show poor agreement at high pressures. A new correlation has been proposed to estimate the CHF in uniformly heated vertical tubes up to the critical pressure and over a wide range of parameters.  相似文献   

5.
A great number of experimental investigations allowing one to reveal the physical mechanism of processes responsible for their thermal and hydraulic performance are carried out in attempt to solve problems of updating constructions and methods of thermal design of heating surfaces of transversely finned tubes widespread in power engineering. Results of flow visualization and investigation of pressure fields and local heat transfer at the fin surface over the Reynolds number range Re = (1.0 ? 6.6) · 104 are presented for the case of a wide variation of geometric characteristics of finned tubes and parameters of their arrangement in a bundle. Regularities substantially changing the existing concept of transfer processes in the interfin space and in the wake behind a finned tube are revealed. It is found that the flow behavior and the distribution of local heat transfer coefficients over the fin surface change significantly at the fin height-to-finned tube diameter h/d approximately equal to 0.4. The results obtained are generalized in the form of the patterns of flow and heat transfer at the finned tube surface, including seven characteristic regions and four types of flow separation.  相似文献   

6.
The inner surfaces of microtubes may be influenced strongly by the process of making them due to manufacturing difficulties at these scales compared to larger ones, e.g. the surface characteristics of a seamless cold drawn tube may differ from those of a welded tube. Accordingly, flow boiling heat transfer characteristics may vary. In addition, there is no common agreement between researchers on the criteria of selecting tubes for flow boiling experiments. Instead, tubes are usually ordered from commercial suppliers, in many cases without taking into consideration the manufacturing method and its effect on the heat transfer process. This may explain some of the discrepancies in heat transfer characteristics which are found in the open literature. This paper presents a comparison between experimental flow boiling heat transfer results obtained using two different metallic tubes. The first one is a seamless cold drawn stainless steel tube of 1.1 mm inner diameter while the second is a welded stainless steel tube of 1.16 mm inner diameter. Both tubes have a heated length of 150 mm and the flow direction is vertically upwards. The tubes were heated using DC current. Other experimental conditions include: 8 bar system pressure, 300 kg/m2 s mass flux, about 5 K inlet sub-cooling and up to 0.9 exit quality. The results are presented in the form of local heat transfer coefficient versus local quality and axial distance. Also, the boiling curves of the two tubes are discussed. The results show a significant effect of tube inner surface morphology on the heat transfer characteristics.  相似文献   

7.
An experimental investigation on two-phase flow boiling heat transfer with refrigerants of R-22, R-134a, R-410A, C3H8 and CO2 in horizontal circular small tubes is presented. The experimental data were obtained over a heat flux range of 5–40 kW m?2, mass flux range of 50–600 kg m?2 s?1, saturation temperature range of 0–15 °C, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5, 1.5 and 3.0 mm, and lengths of 330, 1000, 1500, 2000 and 3000 mm. The experimental data were mapped on Wang et al. (1997) [5] and Wojtan et al. (2005) [6] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the heat transfer coefficient are reported. The experimental heat transfer coefficients were compared with some existing correlations. A new boiling heat transfer coefficient correlation that is based on a superposition model for refrigerants in small tubes is presented with 15.28% mean deviation and ?0.48% average deviation.  相似文献   

8.
A flow regime based condensation model is developed for refrigerants in single, smooth, horizontal tubes utilizing a generalized probabilistic two-phase flow map. Flow map time fraction information is used to provide a physically based weighting of heat transfer models developed for different flow regimes. The developed model is compared with other models in the literature, with experimentally obtained condensation data of R134a in 8.92 mm diameter tubes, and with data found in the literature for 3.14 mm, 7.04 mm, and 9.58 mm tubes with R11, R12, R134a, R22, R410A, and R32/R125 (60/40% by weight) refrigerants and a wide range of mass fluxes and qualities.  相似文献   

9.
An experimental study on in-tube flow boiling heat transfer of R-134a/R-290/R-600a refrigerant mixture has been carried out under varied heat flux test conditions. The heat transfer coefficients are experimentally measured at temperatures between ?8 and 5 °C for mass flow rates of 3–5 g s?1. Acetone is used as a hot fluid which flows in the outer tube of diameter 28.57 mm while the refrigerant mixture flows in the inner tube of diameters 9.52 and 12.7 mm. By regulating the acetone flow conditions, the heat flux is maintained between 2 and 8 kW/m2 and the pressure of the refrigerant is maintained between 3.2 and 5 bar. The comparison of experimental results with the familiar correlations shows that the correlations over predict the heat transfer coefficients for this mixture when stratified and stratified-wavy flow prevail. Multiple regression technique is used to evolve and modify existing correlations to predict the heat transfer coefficient of the refrigerant mixture. It is found that the modified version of Lavin–Young correlation (1965) predicts the heat transfer coefficient of the considered mixture within an average deviation of ±20.5 %.  相似文献   

10.
A product of friction factor and Reynolds number (f · Re) of gaseous flow in a quasi-fully developed region of a micro-tube was obtained numerically and experimentally. Two-dimensional compressible momentum and energy equations were solved for a wide range of Reynolds number and Mach number for both ‘no heat conduction’ and isothermal flow conditions. It was found from numerical results that the product of friction factor and Reynolds number (f · Re) in a quasi-fully developed region is expressed as a function of Mach number. The tube cutting method was adopted to obtain the pressure variation along the tube. Fused silica tubes of nominal diameter of 150 μm, were used for experiments. The experimental results also indicate that (f · Re) is a function of Mach number.  相似文献   

11.
Recent reviews of flow boiling heat transfer in small tubes and channels have highlighted the need for predictive correlations that are applicable over a wide range of parameters and across different studies. A composite correlation is developed in the present work which includes nucleate boiling and convective heat transfer terms while accounting for the effect of bubble confinement in small channels. The correlation is developed from a database of 3899 data points from 14 studies in the literature covering 12 different wetting and non-wetting fluids, hydraulic diameters ranging from 0.16 to 2.92 mm, and confinement numbers from 0.3 to 4.0. The mass fluxes included in the database range from 20 to 3000 kg m?2 s?1, the heat fluxes from 0.4 to 115 W cm?2, the vapor qualities from 0 to 1, and the saturation temperatures from ?194 to 97 °C. While some of the data sets show opposing trends with respect to some parameters, a mean absolute error of less than 30% is achieved with the proposed correlation.  相似文献   

12.
A direct-contact compact heat exchanger to enhance cooling of hot water, has been manufactured and tested experimentally. Hereby hot water is dispersed into a cooler liquid gallium bath in the form of small water bubbles emanating from 48 holes with 3 mm diameter each, drilled on four horizontal bubbles distribution tubes. Heat transfer limitations posed by gallium's low specific heat have been circumvented by imbedding cooling water tubes within the gallium. Thereby it was possible to maintain gallium at almost 30 °C during water bubbling; slightly above gallium's freezing point. Temperature reduction by about 23 °C was possible for hot water flow with initial temperature of about 60 °C and flow rate of 11.3 g/s when bubbled through such gallium bath that has temperature of about 30 °C and thickness of about only 18 mm. To realize such temperature drop for water using equivalent shell-tube heat exchangers of conventional kinds with 3 mm diameter tubing, a tube length in the range of 70 to 80 cm would be required. Theoretical considerations and empirical correlations dedicated to solid sphere calculations have been used to predict motion and heat transfer events for water bubbles moving through isothermal gallium bath. The computations were extended to include the experimental temperature conditions tested. Computations agree very well with experimental results.  相似文献   

13.
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of ¼, ½, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 °C. For mass velocities higher than 200 kg/m2s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m2s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%.  相似文献   

14.
A complete solution for boiling phenomena in smooth tubes has been giving as a procedure regarding with the calculation of convective heat transfer coefficient and pressure drop using accurate experimental data validated by flow regime maps and sight glasses on the experimental facility. The experimental study is conducted in order to investigate the effect of operating parameters on flow boiling convective heat transfer coefficient and pressure drop of R134a. The smooth tube having 8.62 mm inner diameter and 1100 mm length is used in the experiments. The effect of mass flux, saturation temperature and heat flux is researched in the range of 290–381 kg/m2 s, 15–22 °C and 10–15 kW/m2, respectively. The experiments revealed that the heat transfer coefficient and pressure drop are significantly affected by mass flux for all tested conditions. Moreover, the experimental results are compared with well-known heat transfer coefficient and frictional pressure drop correlations given in the literature. In addition, 122 number of heat transfer and pressure drop raw experimental data is given for researchers to validate their theoretical models.  相似文献   

15.
Dispersed flow film boiling heat transfer in vertical narrow annular gaps with gap sizes of 1.0, 1.5 and 2.0 mm was experimentally investigated with de-ionized water as the working fluid at low mass velocities. Comparisons of the experimental data with established correlations show that the correlations are not accurate for small gaps. The influences of the heating mode (only one tube heating or both tubes heated), the gap size and the tube diameter were analyzed. The data was correlated in the form of the Groeneveld equation with a modified wall temperature factor as use in the Polomik correlation and a modified gap size factor as use in the Yun and Muthu correlation. A new correlation was developed for dispersed flow film boiling heat transfer based on the experimental data for 1.0–2.0 mm gaps.  相似文献   

16.
Owing to the generalization problem, there aren't sufficient empirical correlations for two-phase flows. So as to investigate the thermal features of the two-phase flow in smooth and enhanced tubes, a suitable procedure of the models and correlations related with the heat transfer coefficients, friction factors and two-phase multipliers are needed because a significant variation in thermal properties happens during phase-change. Comparison of frictional pressure drop of R134a during flow boiling phenomena occurred in a smooth and 5 enhanced tubes with well-known empirical correlations were performed in this study. The apparatus has 0.85 m long double tube for vertical configuration as a test section that includes smooth and corrugated copper tubing having inner diameters of 0.0087 m, and the range of mass fluxes are between 200 and 400 kg m 2 s 1. The average vapor qualities vary from 0.14 to 0.86, and saturation pressure interval is between 4.5 and 5.7 bar. The mean boiling heat transfer coefficient of R134a is determined via energy balance in the test section. The estimation performance of 36 empirical correlations in literature proposed for convective boiling flows in smooth and corrugated tubes are evaluated by means of authors' database (350 data points for vertical tubes). Boiling trend lines have been plotted for the change of vapor quality, liquid phase Reynolds numbers with gas phase ones. In addition, the most successful correlations are confirmed their predictabilities for the vertical adjusted evaporator having smooth and corrugated tubes using the database of authors' earlier publications in open sources.  相似文献   

17.
Experimental pressure drop data for vertical two-phase air–water flow across horizontal tubes is presented for gas mass fractions in the range 0.0005–0.6 and mass fluxes in the range 25–700 kg/m2 s. The square in-line tube bundle had one column containing ten tubes and two columns of half tubes attached to the walls. The tubes had a diameter of 38 mm and a pitch to diameter ratio of 1.32. This data and air–water and R113 vapour–liquid data available in the literature are compared with the predictions from two kettle reboiler models, the one-dimensional model and a one-dimensional formulation of the two-fluid model. The one-dimensional model was implemented with three separate void fraction correlations and one two-phase friction multiplier correlation. The results show that the two-fluid model predicts air–water void fraction data well but R113 data poorly with pressure drop predictions for both being unsatisfactory. The one-dimensional model is shown to predict pressure drop and void fraction data reasonably well, provided a careful choice is made for the void fraction correlation.  相似文献   

18.
The effect of the flow geometry parameters on transient forced convection heat transfer for turbulent flow in a circular tube with baffle inserts has been investigated. The characteristic parameters of the tubes are pitch to tube inlet diameter ratio H/D = 1, 2 and 3, baffle orientation angle β = 45°, 90° and 180°. Air, Prandtl number of which is 0.71, was used as working fluid, while stainless steel was considered as pipe and baffle material. During the experiments, different geometrical parameters such as the baffle spacing H and the baffle orientation angle β were varied. Totally, nine types of baffle inserted tube were used. The general empirical equations of time averaged Nusselt number and time averaged pressure drop were derived as a function of Reynolds number corresponding to the baffle geometry parameters of pitch to diameter ratio H/D, baffle orientation angle β, ratio of smooth to baffled cross-section area So/Sa and ratio of tube length to baffle spacing L/H were derived for transient flow conditions. The proposed empirical correlations were considered to be applicable within the range of Reynolds number 3000  Re  20,000 for the case of constant heat flux.  相似文献   

19.
An empirical setup has been established to study heat transfer and pressure drop characteristics during condensation of R600a, a hydrocarbon refrigerant, in a horizontal plain tube and different flattened channels. Round copper tubes of 8.7 mm I.D. were deformed into flattened channels with different interior heights of 6.7 mm, 5.2 mm and 3.1 mm as test sections. The test conditions include heat flux of 17 kw/m2, mass velocity in the range of 154.8–265.4 kg/m2s and vapor quality variation from approximately 10% to 80%. Results indicate that flattening the tubes causes significant enhancement of heat transfer coefficient which is also accompanied by simultaneous augmentation in flow pressure drop. Therefore, the overall performance of the flattened tubes with respect to heat transfer enhancement considering the pressure drop penalty is analyzed. It is concluded that the flattened tube with 5.2 mm inner height tube has the best overall performance. Due to the failure of pre-existing correlations for round tube condensation heat transfer, a new correlation is proposed which predicts 90% of the entire data within ± 17% error.  相似文献   

20.
Helical-wire-coils fitted inside a round tube have been experimentally studied in order to characterize their thermohydraulic behaviour in laminar, transition and turbulent flow. By using water and water–propylene glycol mixtures at different temperatures, a wide range of flow conditions have been covered: Reynolds numbers from 80 to 90,000 and Prandtl numbers from 2.8 to 150. Six wire coils were tested within a geometrical range of helical pitch 1.17 < p/d < 2.68 and wire diameter 0.07 < e/d < 0.10. Experimental correlations of Fanning friction factor and Nusselt number as functions of flow and dimensionless geometric parameters have been proposed. Results have shown that in turbulent flow wire coils increase pressure drop up to nine times and heat transfer up to four times compared to the empty smooth tube. At low Reynolds numbers, wire coils behave as a smooth tube but accelerate transition to critical Reynolds numbers down to 700. Within the transition region, if wire coils are fitted inside a smooth tube heat exchanger, heat transfer rate can be increased up to 200% keeping pumping power constant. Wire coil inserts offer their best performance within the transition region where they show a considerable advantage over other enhancement techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号