首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Materials Letters》2007,61(11-12):2499-2501
A single crystal of Tb: KLu(WO4)2 with dimensions of 40 mm × 40 mm × 18 mm has been grown by the top-seeded solution growth (TSSG) method. The color of the crystal is brown. Absorption and fluorescence spectra were measured at room temperature. The measured specific heat is a little lower than that of Yb: KLW (0.365 J/g K) at 90 °C. The measured mean linear coefficients of thermal expansion are αa = 17.1643 × 10 6 K 1, αa = 14.0896 × 10 6 K 1, αb = 8.7938 × 10 6 K 1, αc = 23.1745 × 10 6 K 1, αc = 20.2866 × 10 6 K 1. The results indicate that the crystal has a large anisotropy. The refractive index was measured.  相似文献   

2.
Antiperovskite manganese nitride Mn3Cu0.6Ge0.4N was fabricated by spark plasma sintering (SPS) at different temperatures and its negative thermal expansion behavior was investigated. It is observed that the width of negative thermal expansion (NTE) operation-temperature window becomes broader when the sintering temperature decreases. Moreover, it is significantly larger than that of other Mn3CuN-based antiperovskite manganese nitrides prepared by solid-state reaction. More interestingly, the Mn3Cu0.6Ge0.4N sintered at 650 °C shows near zero thermal expansion (ZTE) behavior in the temperature range of 220–170 K. The average linear coefficient of thermal expansion (CTE) is estimated to be −0.9 × 106 K1. Magnetic measurement shows that the process of the magnetic transition becomes slow when the sintering temperature decreases. This antiperovskite manganese nitride Mn3Cu0.6Ge0.4N with ZTE behavior is much useful for applications in the fields of cryogenics and applied superconductivity.  相似文献   

3.
This paper presents highly precise measurements of thermal expansion of a “hybrid” carbon-fiber reinforced silicon carbide composite, HB-Cesic® – a trademark of ECM, in the temperature region of ~310–10 K. Whilst C/SiC composites have been considered to be promising for the mirrors and other structures of space-borne cryogenic telescopes, the anisotropic thermal expansion has been a potential disadvantage of this material. HB-Cesic® is a newly developed composite using a mixture of different types of chopped, short carbon-fiber, in which one of the important aims of the development was to reduce the anisotropy. The measurements indicate that the anisotropy was much reduced down to 4% as a result of hybridization. The thermal expansion data obtained are presented as functions of temperature using eighth-order polynomials separately for the horizontal (XY-) and vertical (Z-) directions of the fabrication process. The average CTEs and their dispersion (1σ) in the range 293–10 K derived from the data for the XY- and Z-directions were 0.805 ± 0.003 × 10?6 K?1 and 0.837 ± 0.001 × 10?6 K?1, respectively. The absolute accuracy and the reproducibility of the present measurements are suggested to be better than 0.01 × 10?6 K?1 and 0.001 × 10?6 K?1, respectively. The residual anisotropy of the thermal expansion was consistent with our previous speculation regarding carbon-fiber, in which the residual anisotropy tended to lie mainly in the horizontal plane.  相似文献   

4.
We have carried out in situ high temperature X-ray diffraction (HTXRD) studies of silicalite-1 (S-1) and metallosilicate molecular sieves containing iron, titanium and zirconium having Mobil Five (MFI) structure (iron silicalite-1 (FeS-1), titanium silicalite-1 (TS-1) and zirconium silicalite-1 (ZrS-1), respectively) in order to study the thermal stability of these materials. Isomorphous substitution of Si4+ by metal atoms is confirmed by the expansion of unit cell volume by X-ray diffraction (XRD) and the presence of Si-O-M stretching band at ∼960 cm−1 by Fourier transform infrared (FTIR) spectroscopy. Appearance of cristobalite phase is seen at 1023 and 1173 K in S-1 and FeS-1 samples. While the samples S-1 and FeS-1 decompose completely to cristobalite at 1173 and 1323 K, respectively, the other two samples are thermally stable upto 1623 K. This transformation is irreversible. Although all materials show a negative lattice thermal expansion, their lattice thermal expansion coefficients vary. The thermal expansion behavior in all samples is anisotropic with relative strength of contraction along ‘a’ axes is more than along ‘b’ and ‘c’ axes in S-1, TS-1, ZrS-1 and vice versa in FeS-1. Lattice thermal expansion coefficients (αv) in the temperature range 298-1023 K were −6.75 × 10−6 K−1 for S-1, −12.91 × 10−6 K−1 for FeS-1, −16.02 × 10−6 K−1 for TS-1 and −17.92 × 10−6 K−1 for ZrS-1. The highest lattice thermal expansion coefficients (αv) obtained were −11.53 × 10−6 K−1 for FeS-1 in temperature range 298-1173 K, −20.86 × 10−6 K−1 for TS-1 and −25.54 × 10−6 K−1 for ZrS-1, respectively, in the temperature range 298-1623 K. Tetravalent cation substitution for Si4+ in the lattice leads to a high thermal stability as compared to substitution by trivalent cations.  相似文献   

5.
Low thermal conductivity is one of the key requirements for thermal barrier coating materials. From the consideration of crystal structure and ion radius, La3 + Doped Yb2Sn2O7 ceramics with pyrochlore crystal structures were synthesized by sol–gel method as candidates of thermal barrier materials in aero-engines. As La3 + and Yb3 + ions have the largest radius difference in lanthanoid group, La3 + ions were expected to produce significant disorders by replacing Yb3 + ions in cation layers of Yb2Sn2O7. Both experimental and computational phase analyses were carried out, and good agreement had been obtained. The lattice constants of solid solution (LaxYb1  x)2Sn2O7 (x = 0.3, 0.5, 0.7) increased linearly when the content of La3 + was increased. The thermal properties (thermal conductivity and coefficients of thermal expansion) of the synthesized materials had been compared with traditional 8 wt.% yttria stabilized zirconia (8YSZ) and La2Zr2O7 (LZ). It was found that La3 + Doped Yb2Sn2O7 exhibited lower thermal conductivities than un-doped stannates. Amongst all compositions studied, (La0.5Yb0.5)2Sn2O7 exhibited the lowest thermal conductivity (0.851 W·m 1·K 1 at room temperature), which was much lower than that of 8YSZ (1.353 W·m 1·K 1), and possessed a high coefficient of thermal expansion (CTE), 13.530 × 10 6 K 1 at 950 °C.  相似文献   

6.
A large LiBaB9O15 single crystal has been grown by the top-seeded solution growth (TSSG) method using a Li2Mo3O10 flux system. The crystal obtained exhibits (1 1 0), (1 1 3) and (1 0 2) faces. For the first time, thermal properties of the as-grown crystal, including thermal expansion, specific heat and thermal conductivity, have been investigated as a function of temperature. The specific heat of the LiBaB9O15 crystal was measured to be 0.663–1.110 J g?1 K?1 over the temperature range of 20–400 °C. The crystal exhibits thermal expansion along the a- and b-axis, coupled with thermal contraction along the c-axis, over the measured temperature range of 25–500 °C. The average thermal expansion coefficients along the a- and c-axis of the LiBaB9O15 crystal from 25 to 500 °C are calculated to be αa = 6.56 × 10?6 K?1 and αc = ?4.82 × 10?6 K?1, respectively.  相似文献   

7.
The electrical conductivity, thermal conductivity and its relationship with the microstructure in Mg–5Sn alloy aged at 513 K for different aging times were investigated systematically in this paper. The results show that the electrical conductivity and thermal conductivity obviously increase with the increasing aging time, and its values increase from 10.25 × 106 S·m 1 to 13.7 × 106 S·m 1, 87.5 W·m 1·K 1 to 122 W·m 1·K 1 after aging treatment for 120 h, respectively. Meanwhile, it is found that there exist quite different relationships between unit cell volume and thermal conductivity in early and later aging stages.  相似文献   

8.
The polymer composites composed of graphene foam (GF), graphene sheets (GSs) and pliable polydimethylsiloxane (PDMS) were fabricated and their thermal properties were investigated. Due to the unique interconnected structure of GF, the thermal conductivity of GF/PDMS composite reaches 0.56 W m−1 K−1, which is about 300% that of pure PDMS, and 20% higher than that of GS/PDMS composite with the same graphene loading of 0.7 wt%. Its coefficient of thermal expansion is (80–137) × 10−6/K within 25–150 °C, much lower than those of GS/PDMS composite and pure PDMS. In addition, it also shows superior thermal and dimensional stability. All above results demonstrate that the GF/PDMS composite is a good candidate for thermal interface materials, which could be applied in the thermal management of electronic devices, etc.  相似文献   

9.
《Materials Letters》2007,61(14-15):3208-3210
We report here for the first time the temperature dependence of the electrical resistivity and heat capacity of nano-crystalline MgTiO3 geikielite of up to 1000 K. The temperature dependence of heat capacity of nano-crystalline geikielite expressed as Cp = 46.44(5) + 0.0502(2)T  4.56 × 106T2 + 1.423 × 103T 0.5  8.672 × 10 6T 2, where Cp = is specific heat expressed in J/mol. K and T is the temperature in K. Both the electrical resistivity and heat capacity behaviour show that the geikielite (both the natural and synthetic nano-crystalline samples) are stable and remains electrically insulating up to 1000 K.  相似文献   

10.
Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10−6 to 6 × 10−6/K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al2Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.  相似文献   

11.
Aluminum matrix composites reinforced with diamond particles were consolidated by spark plasma sintering. Metalloid silicon was added (Al–Si/diamond composites) to investigate the effect. Silicon addition promotes the formation of molten metal during the sintering to facilitate the densification and enhance the interfacial bonding. Meanwhile, the alloying metal matrix precipitates the eutectic-Si on the diamond surfaces acting as the transitional part to protect the improved interface during the cooling stage. The improved interface and precipitating eutectic-Si phase are mutually responsible for the optimized properties of the composites. In this study, for the Al–Si/diamond composite with 55 vol.% diamonds of 75 μm diameter, the thermal conductivity increased from 200 to 412 Wm−1 K−1, and the coefficient of thermal expansion (CTE) decreased from 8.9 to 7.3 × 10−6 K−1, compared to the Al/diamond composites. Accordingly, the residual plastic strain was 0.10 × 10−3 during the first cycle and rapidly became negligible during the second. Additionally, the measured CTE of the Al–Si/diamond composites was more conform to the Schapery’s model.  相似文献   

12.
Diamond dispersed copper matrix (Cu/D) composite films with strong interfacial bonding were produced by tape casting and hot pressing without carbide forming additives. The tape casting process offers an original solution to obtain laminated materials with accurate thickness control, smooth surface finish, material net-shaping, scalability, and low cost. This study presents an innovative process of copper submicronic particles deposition onto diamond reinforcements prior to densification by hot pressing. Copper particles act as chemical bonding agents between the copper matrix and the diamond reinforcements during hot pressing, thus offering an alternative solution to traditionnal carbide-forming materials in order to get efficient interfacial bonding and heat-transfer in Cu/D composites. It allows high thermal performances with low content of diamond, thus enhancing the cost-effectiveness of the materials. Microstructural study of composites by scanning electron microscopy (SEM) was correlated with thermal conductivity and thermal expansion coefficient measurements. The as-fabricated films exhibit a thermal conductivity of 455 W m?1 K?1 associated to a coefficient of thermal expansion of 12 × 10?6 °C?1 and a density of 6.6 g cm?3 with a diamond volume fraction of 40%, which represents a strong enhancement relative to pure copper properties (λCu = 400 W m?1 K?1, αCu = 17 × 10?6 °C?1, ρCu = 8.95 g cm?3). The as-fabricated composite films might be useful as heat-spreading layers for thermal management of power electronic modules.  相似文献   

13.
Mixed ionic and electronic conductors of La1−xCaxFeO3−δ (LCF, x =0.0–0.5) have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), dilatometry, and four-probe electrical conductivity measurements. Ca substitution on La site reduces the LaFeO3 sinterability and the cell volume of this orthorhombic crystal. Dense samples for property studies can be sintered at 1320 °C. Nevertheless, the sintering temperature is near the decomposition temperature of LCF for those solid solutions of x  0.3. The LCF decomposition is evident when a La-poor secondary phase, not detected in XRD, was revealed in SEM micrographs of 1270 °C thermally etched samples of x  0.3. Dilatometric studies demonstrate linear increments in thermal expansion with increasing temperature in samples of x  0.2, while show strange bendings in thermal expansion curves of x = 0.4 and 0.5. The bending in thermal expansion indicates influences of the secondary phase. The TEC value of compositions of x  0.2 is between 10.8 and 11.7 × 10−6 °C−1. The LCF electrical conductivity increases with the Ca content and its temperature dependence can be described by the small polaron hopping mechanism. The composition around x = 0.15 promises to be a superior cathode for SOFC since it thermally matches with 8 mol% YSZ and 10 mol% Dy, Er substituted LAMOX electrolytes and possesses electrical conductivity near 90 S cm−1 at 800 °C.  相似文献   

14.
The through-thickness thermoelectric behavior of continuous carbon fiber epoxy-matrix composites is greatly improved by adding tellurium particles (13 vol.%), bismuth telluride particles (2 vol.%) and carbon black (2 vol.%). The thermoelectric power is increased from 8 to 163 μV/K, the electrical resistivity is decreased from 0.17 to 0.02.Ω.cm, the thermal conductivity is decreased from 1.31 to 0.51 W/m.K, and the dimensionless thermoelectric figure of merit ZT at 70 °C is increased from 9 × 10−6 to 9 × 10−2. Tellurium increases the thermoelectric power greatly. Bismuth telluride decreases the electrical resistivity and thermal conductivity. Carbon black decreases the electrical resistivity.  相似文献   

15.
Polycrystalline samples of BaV13O18 and SrV13O18 were prepared by solid-state reaction of BaCO3, SrCO3, V2O5 and V at 1773–2073 K in flowing Ar. The crystal structures of BaV13O18 (R-3, ah=12.6293(10) Å, ch=7.0121(4) Å) and SrV13O18 (ah=12.5491(7) Å, ch=6.9878(3) Å) were refined by the Rietveld method using X-ray diffraction data. BaV13O18 exhibited semiconducting behavior with electrical resistivity from 5.8×10−3 to 2.7×10−3 Ω cm at 100–300 K. Electrical resistivity of SrV13O18 ranged from 1.5×10−3 to 1.8×10−3 Ω cm, and it increased slightly up to around 250 K and decreased above 250 K with increasing temperature. Negative Seebeck coefficients of both compounds at 100–300 K indicated that electron was the dominant carrier. BaV13O18 and SrV13O18 showed paramagnetism with the effective magnetic moment of 0.11μB and 0.15μB, respectively, at 10–100 K.  相似文献   

16.
The crystal structure of the ordered fluorite, Pr3RuO7, was refined from powder neutron diffraction data in Cmcm. An interesting structural feature is the presence of relatively well separated zig-zag chains of corner sharing RuO6 octahedra, Ru–Ru interchain distance 6.61 Å vs. Ru–Ru intrachain distance of 3.76 Å. Magnetic susceptibility data show a Curie–Weiss behavior for T>225 K with C=5.96(4) emu K mol−1 and θc=+11(2) K. In an attempt to separate the contributions of Pr(3+) and Ru(5+), the properties of isostructural Pr3TaO7 were also measured, yielding C=4.63(3) emu K mol−1. Thus, the contribution of Ru(5+), 4d3, S=3/2, to the measured Curie constant is estimated to be 1.33 emu K mol−1, not far from the spin-only value of 1.87 emu K mol−1. This supports the view that the Ru 4d electrons are localized and magnetic, not itinerant. A susceptibility maximum at about 50 K is attributed to long-range magnetic order and this is substantiated by neutron diffraction data. There is little evidence for one-dimensional antiferromagnetic correlations in this material but behavior characteristic of short-range ferromagnetic correlations attributed to Pr–Ru exchange interactions are found in the temperature range 50–200 K, consistent with the positive θc.  相似文献   

17.
Hydroxy apatite (HAp) ceramic was synthesized using traditional sintering. Dilatometric and lattice thermal expansion properties of a HAp ceramic were evaluated at temperatures of ? 100–50 °C. In that temperature range, the dilatometric thermal expansion coefficient and the lattice thermal expansion coefficient of the HAp ceramic were, respectively, 10.6 × 10? 6/°C and 9.9 × 10? 6/°C. Furthermore, thermal expansion properties of a human tooth were measured. The thermal expansion coefficient of the horizontal direction perpendicular to the growing direction of a tooth was 15.5 × 10? 6/°C; that of the vertical direction along with the direction of tooth growth was 18.9 × 10? 6/°C at the temperature range described above.  相似文献   

18.
Nanocomposite matrix based on chitosan/laponite was successfully utilized to construct a new type of amperometric glucose biosensor. This hybrid material combined the merits of organic biopolymer, chitosan, and synthesized inorganic clay, laponite. Glucose oxidase (GOD) immobilized in the material maintained its activity well as the usage of glutaraldehyde was avoided. The composite films were characterized by Fourier transform infrared (FT-IR). The parameters affecting the fabrication and experimental conditions of biosensors were optimized. The sensitivity of the proposed biosensor (33.9 mA M 1 cm 2) permitted the determination of glucose in the concentration range of 1 × 10 6–5 × 10 5 M with a detection limit of 0.3 μM based on S/N = 3. The apparent Michaelis–Menten constant (KMapp) for the sensor was found to be 15.8 mM.  相似文献   

19.
The Judd–Ofelt theory has been applied to analyze absorption spectra of Ho3+ ion in HoAl3(BO3)4 measured in spectral range 300–700 nm at room temperature. The Judd–Ofelt spectroscopic parameters have been determined as: Ω2 = 18.87 × 10−20 cm2, Ω4 = 17.04 × 10−20 cm2, Ω6 = 9.21 × 10−20 cm2. These parameters have been used to calculate radiative lifetimes and branching ratios of the luminescence manifolds. Three luminescent bands were found in the spectral range 450–700 nm ascribed to transitions from the 5F5, (5F4, 5S2) and 3K8 states to the ground state 5I8. Experimental intensities of these luminescence transitions were compared with those calculated by using Judd–Ofelt theory and the system of kinetic equations for populations of starting luminescing states. Probabilities of radiativeless transitions were evaluated from this comparison.  相似文献   

20.
《Thin solid films》2006,515(2):509-512
Silicon nitride (Si3N4) is an important insulator, frequently used in VLSI technology and for encapsulation. Conventionally it is prepared by low pressure and plasma-enhanced chemical vapour deposition, but may also be successfully deposited by RF sputtering. In the present work the sputtering process was characterised, together with some measurements on the high-field DC electrical properties in sandwich samples with Au electrodes. Films were Ar-sputtered using a Si3N4 sputtering target at gas pressures up to 2.12 Pa and RF discharge powers of 60–200 W. The deposition rate R was in the range 0.03–0.19 nm s 1 and was directly proportional to the discharge power and varied linearly with the pressure. Au electrodes formed sandwich structures with thicknesses of 50 nm–1 μm. Conductivity was essentially ohmic below 300 nm, while for the thicker films space-charge limited conductivity, dominated by an exponential distribution of traps, was observed. A mobility value of μ = 2.89 × 10 6 m2 V 1 s 1 was derived from temperature measurements, and further analysis of the JV data indicated a thermally generated electron concentration of 3.23 × 1019 m 3 and a trap concentration of 1.57 × 1024 m 3. It was concluded that this method is suitable for the deposition of thin films, which have similar electrical properties to those prepared by chemical vapour deposition methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号