首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pool boiling experiments were conducted in the European Space Agency (ESA) multi-user facility, the bubble, drop, particle unit (BDPU) in the microgravity environment of space. A part of the study involved the heating of a small sphere immersed in R-123 to the onset of nucleate boiling. An analysis of the nucleation process is presented, based on a prior work for so-called quasi-homogeneous nucleation with a flat heater surface in microgravity. Reasonably good qualitative agreement exists between the analysis and measurements.  相似文献   

2.
Pool boiling characteristics of pyramidal shaped re-entrant cavities (characteristic size 40 μm) etched in silicon were evaluated in this study. A test surface was fabricated to totally eliminate back heat loss and minimize spreading in the substrate. The effect of inter-cavity spacing and convection plumes from a heat source located below the test surface on nucleate boiling parameters is documented. High speed photography was used to record and quantify the bubble departure frequency, the departure diameter, the active site density and to observe the effect of interaction between neighboring nucleation sites. Experiments were conducted in saturated FC 72 at atmospheric pressure.  相似文献   

3.
Bubble dynamics in saturated pool boiling of R-123 with and without an applied electric field have been investigated using a novel, flat, transparent heated surface. This method allows viewing and measurement of bubble dynamics from the entire heater surface without interference from the fluid or other bubbles. The data have been used to quantify the effect of an electric field on the latent heat contribution to the total heat flux and to demonstrate the effectiveness of this experimental technique. For a given heat flux, the application of the electric field reduces the surface temperature, thereby suppressing boiling and reducing the latent heat contribution.  相似文献   

4.
In this study, the coating process on the copper surface with titanium dioxide (TiO2) has been introduced. The coated surface exhibits extremely high affinity for water and the solid–liquid contact angle decreases nearly to zero by exposing the surface to ultra-violet light. This superhydrophilic characteristic was applied to nucleate boiling heat transfer of water jet impingement on a flat heated plate. By making use of this special heat transfer surface, the nucleate boiling heat transfer and the critical heat flux (CHF) of a bar water jet impingement on a large flat superhydrophilic surface was experimentally investigated. The experimental data were measured in a steady state. The purified water was employed as the working liquid. Three main influencing factors, i.e., subcooling, impact velocity and the surface coating condition, were changed and their effects on the nucleate boiling heat transfer and the CHF were investigated. The empirical correlations were obtained for predicting the CHF of steady boiling for a small round water jet impingement on a large flat superhydrophilic surface. The experimental results show that the CHF on the superhydrophilic surface is about 30% higher than that on conventional copper surface by decreasing the solid–liquid contact angle.  相似文献   

5.
用两根内表面微结构不同的水平光滑管环状流区流动沸腾换热实验数据,采用叠加模型分别建立了流动沸腾换热关系式,并比较它们的抑制因子。结果表明,表面微结构对抑制因子有显的影响;当表面的平均凹腔半径较大时,抑制因子明显增大。表明表面微结构改变对流动沸腾换热能起到较好的强化作用。  相似文献   

6.
A simultaneous visualization and measurement study has been carried out to investigate subcooled flow boiling and microbubble emission boiling (MEB) phenomena of deionized water in a partially heated Pyrex glass microchannel, having a hydraulic diameter of 155 μm, which was integrated with a Platinum microheater. Effects of mass flux, inlet water subcooling and surface condition of the microheater on subcooled flow boiling in microchannels are investigated. It is found that MEB occurred at high inlet subcoolings and at high heat fluxes, where vapor bubbles collapsed into microbubbles after contacting with the surrounding highly subcooled liquid. In the fully-developed MEB regime where the entire microheater was covered by MEB, the mass flux, the inlet water subcooling and the heater surface condition have only small effects on the boiling curves. The occurrence of MEB in microchannel can remove a large amount of heat flux, as high as 14.41 MW/m2 at a mass flux of 883.8 kg/m2 s, with only a moderate rise in wall temperature. Therefore, MEB is a very promising method for cooling of microelectronic chips. Heat transfer in the fully-developed MEB in the microchannel is presented, which is compared with existing subcooled flow boiling heat transfer correlations for macrochannels.  相似文献   

7.
Titanium Dioxide, TiO2, is a photocatalyst with a unique characteristic. A surface coated with TiO2 exhibits an extremely high affinity for water when exposed to UV light and the contact angle decreases nearly to zero. Inversely, the contact angle increases when the surface is shielded from UV. This superhydrophilic nature gives a self-cleaning effect to the coated surface and has already been applied to some construction materials, car coatings and so on. We applied this property to the enhancement of boiling heat transfer. An experiment involving the pool boiling of pure water has been performed to make clear the effect of high wettability on heat transfer characteristics. The heat transfer surface is a vertical copper cylinder of 17 mm in diameter and the measurement has been done at saturated temperature and in a steady state. Both TiO2-coated and non-coated surfaces were used for comparison. In the case of the TiO2-coated surface, it is exposed to UV light for a few hours before experiment and it is found that the maximum heat flux (CHF) is about two times larger than that of the uncoated surface. The temperature at minimum heat flux (MHF) for the superhydrophilic surface is higher by 100 K than that for the normal one. The superhydrophilic surface can be an ideal heat transfer surface. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The dynamics of a vapor bubble between its liquid phase and a heated plate is studied in relation to the breakdown and recovery of the film boiling. By examining the expansion and the contraction of the vapor bubble the film boiling and transition boiling states are predicted. Conservation laws in the vapor, solid, and liquid phases are invoked along with fully nonlinear, coupled, free boundary conditions. These coupled system of equations are reduced to a single evolution equation for the local thickness of the vapor bubble by using a long-wave asymptotics, which is then solved numerically to yield the transient motion of the vapor bubble. Of the numerous parameters involved in this complex phenomenon we focus on the effects of the degree of superheat from the solid plate, that of the supercooling through the liquid, and the wetting/dewetting characteristics of the liquid on the solid plate. A material property of the substrate thus is incorporated into the criteria for the film boiling based on hydrodynamic models.  相似文献   

9.
A thermodynamic model based on Gibbs free energy and availability is developed for onset of heterogeneous nucleation on heated surfaces with different wettabilities in pool boiling. Different from classical nucleation theory, this model takes into consideration the temperature gradient in the superheated liquid layer adjacent to the wall as well as the contact angle between the liquid and the wall. Using Gibbs free energy equilibrium condition, a closed form solution is obtained on the critical radius for onset of heterogeneous boiling nucleation on walls with different wettabilities. Effects of contact angles and wall temperatures on the critical radius, the wall temperature gradient of the superheated liquid layer and the heat flux at onset of heterogeneous nucleate boiling are illustrated. These effects on the change of availability during the heterogeneous nucleation process, representing the energy barrier for the occurrence of the first-order phase transition, are also discussed.  相似文献   

10.
采用高速摄像技术研究了不同加热表面上液滴蒸发和沸腾的相变特性和壁面温度变化特性,讨论了局部相变行为对壁面温度变化的影响.同时定量的研究了三种不同表面特性的加热板对沸腾和传热的影响,以及液滴初始体积对相变的影响.结果表明,表面特性和液滴尺寸对沸腾传热有较大影响.  相似文献   

11.
12.
The artificial surfaces are applied to study the pool boiling features, including the bubble behaviors, the surface temperature fluctuation, the heat transfer characteristics and nucleate site interaction. Three sets of experiments are carried out to investigate the influences of cavity shape, cavity size, cavity spacing on the boiling phenomena. Experimental results reveal that bubbling from the cylindrical as well as reentrant cavity is generally stable. The influence of cavity diameter on the bubble behaviors and the temperature fluctuation seems very weak while the effect of cavity depth cannot be neglected. As for the two cavity conditions, the bubble behaviors show the different features depending on the dimensionless cavity spacing. Three significant factors (thermal interaction, hydraulic interaction, bubble coalescence) control the nucleation site interaction, and the competition and dominance of the factors yield four interaction regimes.  相似文献   

13.
An experimental work on subcooled boiling of refrigerant, R134a, to examine nucleation site distributions on both copper and stainless steel heating surfaces was performed. In order to obtain high fidelity active nucleation site density and distribution data, a high-speed digital camera was utilized to record bubble emission images from a view normal to heating surfaces. Statistical analyses on nucleation site data were done and their statistical distributions were obtained. Those experimentally observed nucleation site distributions were compared to the random spatial Poisson distribution. The comparisons showed that, rather than purely random, active nucleation site distributions on boiling surfaces are relatively more uniform. Experimental results also showed that on the copper heating surface, nucleation site distributions are slightly more uniform than on the stainless steel surface. This was concluded as the results of thermal interactions between nucleation sites with different solid thermal conductivities. A two dimensional thermal interaction model was then developed to quantitatively examine the thermal interactions between nucleation sites. The results give a reasonable explanation to the experimental observation on nucleation site distributions.  相似文献   

14.
Significant efforts have been made to augment nucleate boiling by surface modification with micro-machined structures, but a general predictive approach for heat transfer enhancement has not yet been developed. In this work, complete numerical simulations are performed for boiling enhancement on a microstructured surface by employing the sharp-interface level-set method, which is modified to handle the contact angle and the evaporative heat flux from the liquid microlayer on an immersed solid surface. The effects of cavity diameter and surface modification such as concentric grooves and multi-step cavities on bubble growth and boiling heat transfer are investigated.  相似文献   

15.
Onset of nucleate boiling (ONB) experiments using deionized water as working fluid have been conducted in a range of pressure from 1 to 4 MPa, mass flow velocity from 56 to 145 kg/m2 s and wall heat flux from 9 to 58 kW/m2 for vertical narrow annuli with annular gap sizes of 0.95, 1.5 and 2 mm. We found that the ONB sometimes occurs only on outer annulus surface, sometimes occurs only on inner annulus surface and sometimes occurs on both annulus surfaces. The heat flux of the other side has great influence on the heat flux of the ONB and the latter will decrease with the increase of the heat flux of the other side. It is also found that the heat flux of the ONB increases with the increase of the pressure, the mass flux and wall superheat. However, the heat flux of the ONB will decrease as the gap size increases in narrow annuli. The heat flux of the ONB in narrow annuli is much lower than that calculated by correlations for conventional channels and a new correlation, which has good agreement with the experimental data, has been developed for predicting the heat flux of the ONB in narrow annuli.  相似文献   

16.
The interaction of surface microstructures and wettability effects on heterogeneous nucleation in pool boiling is analyzed in this paper based on the changes of free energy and availability. It is shown that the bubble is most easily formed on a concave surface in comparison with a convex surface or a plane surface at the same wettability and the same wall temperature. It is found that the effect of microstructures greatly enhances nucleation of bubbles when the curvature radius of these microstructures is in the range of 5–100 times less than the bubble radius. Larger than this limit, the surface roughness effect is negligible and the wettability effect predominates. Closed form analytical solutions for the critical radius and change in availability are obtained for the special case of homogeneous nucleation where no wall temperature gradient exists on surfaces with microstructures. Under this simplified assumption, it is found that the microstructures have no effect on critical nucleation radius and their effect on the change in availability is underestimated.  相似文献   

17.
A surface heated by a frictional impact was simulated by the discharge of a bank of capacitors through a strip of tungsten foil. The resultant rise and fall of temperature were investigated by means of a two-color pyrometer. The heated foil was exposed to various concentrations of flammable gases, and the probability of ignition was investigated as a function of several variables, including gas concentration, temperature profile, and foil size. It was found that the peak temperature necessary for ignition decreased as the width of the foil was increased, and that 7% was the most easily ignitable concentration of methane in air. The size of the heated surface was of the order of 200 mm2 and this necessitated a working range of peak temperatures of approximately 1500°C to 2200°C in the study of the ignition of methane-air. Some preliminary experiments indicated that propane-air could be ignited at much lower temperatures.  相似文献   

18.
Convective boiling in narrow channels may under specific conditions display an unsteady behavior. An experimental set-up has been elaborated to investigate heat and mass transfer and to analyze two-phase flow instabilities in rectangular microchannels with a hydraulic diameter of 889 μm. Depending on the operating conditions two types of behavior are observed: a steady state characterized by pressure drop fluctuations with low amplitudes (from 0.5 to 5 kPa/m) and no characteristic frequency; a non-stationary state of two-phase flow. The pressure signals exhibit fluctuations with high amplitudes (from 20 to 100 kPa/m) and frequencies ranging from 3.6 to 6.6 Hz. Steady and unsteady thermo-hydraulic behaviors depending on the two control parameters (heat flux and mass velocity) are analyzed and given in this paper.  相似文献   

19.
In this paper, the lower limit for the occurrence of homogeneous nucleation boiling explosion during water heating at atmospheric pressure has been determined by applying a new theoretical model proposed by the authors. Two different cases of water heating have been considered for the study of homogeneous nucleation boiling explosion. In one case, the liquid on the surface is linearly heated at a rate of 10 K/s to 109 K/s. In another case, the liquid suddenly contacts with a high temperature surface such as in case of quenching with impinging jet or droplet. With the assumption of liquid boiling without any cavity or surface effect, the liquid temperature limit at which homogeneous boiling explosion occurs essentially corresponds to a value of 302 °C even though the surface is heated very slowly. On the other hand, during water contact with hot surfaces, the occurrence of the homogeneous boiling explosion within a characteristic time period of 1 ms is obtained at a maximum liquid temperature of 303 °C for a limiting steady state boundary temperature of about 304 °C. From the definition of the steady-state interface boundary temperature of two 1-D semi-infinite body contact problem, the lower limiting surface temperatures for the occurrence of the homogeneous nucleation boiling explosion have been determined for water contact with various solid surfaces at different initial liquid temperatures ranging from 0 °C to 100 °C. The effects of the parametric variation in the boundary heating conditions on various characteristics of the homogeneous boiling explosion such as liquid temperature and time of boiling explosion, heat-flux across the liquid–vapor interface at the boiling explosion, etc. are determined and compared with other results reported in the literature.  相似文献   

20.
An experimental investigation is performed to determine the effect of system pressure and heat flux on flow boiling and associated bubble characteristics of a refrigerant in a narrow vertical duct. A high-pressure flow boiling test loop was built and TLC (thermo-chromic liquid crystal) was applied to the back of the heater foil for high resolution and accurate measurement of heater surface temperature. Refrigerant R-134a is used as the test fluid at different pressures ranging from 690 to 827 kPa and different heat fluxes to quantify their influence in bubble characteristics such as bubble nucleation, growth, departure, and coalescence. Two synchronized high resolution and high-speed cameras are used to simultaneously capture TLC images as well as bubbling activities at high frame rates. By varying flow rate and system pressure, TLC and bubble images were captured and analyzed. Results show that the bubble generation frequency and size increase with heat flux. An increase in pressure from 690 to 827 kPa increased the bubble frequency and size by about 32 Hz and 20 μm, respectively. Bubble coalescence was also observed after departure from the nucleation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号