首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a mathematical model is proposed to describe the thermal performance of a radiative distiller under transient conditions. The parameters which cause the dynamic variation in the condenser performance are the finite thermal capacity of the radiative condenser panel, effective sky-temperature, ambient temperature, humidity ratio and the condensers overall heat transfer coefficient. The presented model is solved numerically and the effects of the design and operating conditions on the condensers performance are investigated.  相似文献   

2.
A numerical study was carried out to investigate the radiation effect on the characteristics of the mixed convection fluid flow and heat transfer in inclined ducts. The three-dimensional Navier–Stokes equations and energy equation are solved simultaneously with the vorticity–velocity method. The integro-differential radiative transfer equation was solved by the discrete ordinates method. The effects of the thermal buoyancy and the radiative transfer on the distributions of the bulk fluid temperature, the friction factor and the Nusselt number are emphasized in detail. Results indicate that radiation effects have a considerable impact on the heat transfer and tend to reduce the thermal buoyancy effects. In addition, the development of the bulk fluid temperature is enhanced by the radiation effects.  相似文献   

3.
The thermal efficiency of a reheating furnace was predicted by considering radiative heat transfer to the slabs and the furnace wall. The entire furnace was divided into fourteen sub-zones, and each sub-zone was assumed to be homogeneous in temperature distribution with one medium temperature and wall temperature, which were computed on the basis of the overall heat balance for all of the sub-zones. The thermal energy inflow, thermal energy outflow, heat generation by fuel combustion, heat loss by the skid system, and heat loss by radiation through the boundary of each sub-zone were considered to give the two temperatures of each sub-zone. The radiative heat transfer was solved by the FVM radiation method, and a blocked-off procedure was applied to the treatment of the slabs. The temperature field of a slab was calculated by solving the transient heat conduction equation with the boundary condition of impinging radiation heat flux from the hot combustion gas and furnace wall. Additionally, the slab heating characteristics and thermal behavior of the furnace were analyzed for various fuel feed conditions.  相似文献   

4.
The study of mixed convection heat transfer in horizontal ducts with radiation effects has been numerically examined in detail. This work is primarily focused on the interaction of the thermal radiation with mixed convection for a gray fluid in rectangular horizontal ducts. The vorticity–velocity method is employed to solve the three-dimensional Navier–Stokes equations and energy equation simultaneously. The integro-differential radiative transfer equation was solved by the discrete ordinates method. The attention of the results is focused on the effects of thermal buoyancy and radiative transfer on the development of temperature, the friction factor and the Nusselt number. Results reveal that radiation effects have a considerable impact on the heat transfer and would reduce the thermal buoyancy effects. Besides, the development of temperature is accelerated by the radiation effects.  相似文献   

5.
The coupled radiation‐convection heat transfer of high‐temperature participating medium in heated/cooled tubes is investigated numerically. The medium flows in a laminar and fully developed state with a Poiseuille velocity distribution, but the thermal status is developing. By the discrete ordinate method, the nonlinear integrodifferential radiative transfer equation in a cylindrical coordinate form is solved to give the radiative source term in the energy equation of coupled heat transfer. The energy equation is solved by the control volume method. The local Nusselt number and wall heat flux of convection as well as the total wall heat flux are employed to evaluate the influence of radiation heat transfer on convection. The analysis shows that the radiation heat transfer weakens the convection effect, promotes the temperature development, and significantly shortens the tube length with obvious heated/cooled effect. There is an obvious difference between the coupled heat transfer in a heated tube and that in a cooled tube, even though the medium properties are kept constant. The wall emissivity, the medium thermal conductivity and scattering albedo have significant influences on the coupled heat transfer, but the effect of medium scattering phase function is small. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(1): 64–72, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10137  相似文献   

6.
In this paper, we present an inverse analysis to estimate the thermal boundary conditions over a two-dimensional radiant enclosure from the knowledge of the measured temperatures for some points on a solid object within the enclosure. The conduction heat transfer in the solid object and the radiative heat transfer between the surface elements of the enclosure are formulated by the finite volume method and the net radiative method, respectively. The resultant set of nonlinear equations is solved by the Newton's method. The inverse problem for estimation of boundary conditions over the radiant enclosure is solved by the conjugate gradient method.  相似文献   

7.
《Journal of power sources》2003,124(2):453-458
In this study, a modeling framework for heat and mass transport is established for a unit monolith type SOFC, with emphasis on quantifying the radiation heat transfer effects. The Schuster–Schwartzchild two-flux approximation is used for treating thermal radiation transport in the optically thin yttria-stabilized-zirconia (YSZ) electrolyte, and the Rosseland radiative thermal conductivity is used to account for radiation effects in the optically thick Ni–YSZ and LSM electrodes. The thermal radiation heat transfer is coupled to the overall energy conservation equations through the divergence of the local radiative flux. Commercially available FLUENT™ CFD software was used as a platform for the global thermal-fluid modeling of the SOFC and the radiation models were implemented through the user-defined functions. Results from sample calculations show significant changes in the operating temperatures and parameters of the SOFC with the inclusion of radiation effects.  相似文献   

8.
The present work deals with the fluid flow simulation and thermal analysis of a two-dimensional heat recovery system using porous media. A basic high-temperature flow system is considered in which a high-temperature non-radiating gas flows through a random porous matrix. The porous medium, in addition to its convective heat exchange with the gas, may absorb, emit and scatter thermal radiation. It is desirable to have large amount of radiative heat flux from the porous segment in the upstream direction (towards the thermal system). The lattice Boltzmann method (LBM) is used to simulate fluid flow in the porous medium. The gas and solid phases are considered in non-local thermal equilibrium, and separate energy equations are applied to these phases. Convection, conduction and radiation heat transfers take place simultaneously in solid phase, but in the gas flow, heat transfer occurs by conduction and convection. In order to analyze the thermal characteristics of the heat recovery system, volume-averaged velocities through the porous matrix obtained by LBM are used in the gas energy equation and then the coupled energy equations for gas and porous medium are numerically solved using finite difference method. For computing of radiative heat flux in the porous medium, discrete ordinates method is used to solve the radiative transfer equation. Finally the effect of various parameters on the performance of porous heat recovery system is studied.  相似文献   

9.
This article deals with the numerical analysis of radiative transport in a 2-D axisymmetric cylindrical enclosure containing absorbing, emitting, and scattering medium. The participating medium receives collimated radiation from the top boundary of the enclosure. Attenuation of the collimated radiation in the medium gives rise to the diffuse radiation. Thus, the governing radiative transfer equation accounts for both collimated and diffuse radiation. The radiative transfer equation is solved using the modified discrete ordinate method. Effects of extinction coefficient, scattering albedo, and aspect ratio on radial and axial distributions of heat flux and incident radiation are studied. In all cases, results are validated against those available in the literature. Modified discrete ordinate method has been found to provide accurate results.  相似文献   

10.
Entransy is a new concept developed in recent years to measure the transport ability of heat at a temperature in conduction and convection. This paper develops the concept of entransy flux for thermal radiation in enclosures with opaque surfaces. The entransy balance equation and entransy dissipation function are derived. The minimum principle of radiative entransy loss is developed. The potentials and the heat fluxes distribution which meet the Stefan–Boltzmann’s law and the energy balance equation would make the radiative entransy loss minimum if the net heat flux of each surface or the thermal potentials of the surfaces are given. The extremum entransy dissipation principles (EEDP) for thermal radiation are developed. The minimum radiative entransy dissipation leads to the minimum average radiative thermal potential difference for prescribed total heat exchange and the maximum radiative entransy dissipation leads to the maximum heat exchange for prescribed average radiative thermal potential difference. The minimum and maximum principle can be concluded into the minimum thermal resistance principle (MTRP) for thermal radiation by defining the thermal resistance with the entransy dissipation. The EEDP or MTRP is proved to be reliable when they are used to optimize some radiative heat transfer problems, and a comparison is made between the minimum principle of entropy generation and the EEDP.  相似文献   

11.
This article deals with the analysis of combined mode conduction and radiation heat transfer in a porous medium, and simultaneous estimation of the optical properties of the porous matrix. Simultaneous solution of the gas- and solid-phase energy equations encompasses local thermal nonequilibrium, while the convective heat exchange term couples the gas- and the solid-phase energy equations. A localized uniform volumetric heat generation zone is the source of heat transfer in the porous matrix. With volumetric radiative information needed in the solid-phase energy equation computed using the discrete transfer method, the solid- and gas-phase energy equations are simultaneously solved using the finite difference method. For a given set of boundary conditions and operating parameters, the computed temperature distribution serves as the exact temperature profile necessary in the estimation of parameters. In the estimation of parameters using inverse analysis, the objective function is minimized using the genetic algorithm. Effects of measurement error, number of generations, population size, crossover probability, and mutation probability are studied in regard to the accuracy of results and the computational time required. Reasonably accurate estimations of extinction coefficient, scattering albedo, and emissivity of the porous matrix are obtained.  相似文献   

12.
This article deals with the solution of conduction–radiation heat transfer problem involving variable thermal conductivity and variable refractive index. The discrete transfer method has been used for the determination of radiative information for the energy equation that has been solved using the lattice Boltzmann method. Radiatively, medium is absorbing, emitting and scattering. To validate the formulation, transient conduction and radiation heat transfer in a planar participating medium has been considered. For constant thermal conductivity and constant and variable refractive indices, results have been compared with those available in the literature. Effects of conduction–radiation parameter and scattering albedo on temperature have been studied for variable thermal conductivity and constant and/or variable refractive index. Lattice Boltzmann method and the discrete transfer method have been found to successfully deal with the complexities introduced due to variable thermal conductivity and variable refractive index.  相似文献   

13.
《Journal of power sources》2006,157(1):302-310
Because of their high operating temperatures, there has been speculation that thermal radiation may play an important role in the overall heat transfer within the electrode and electrolyte layers of solid oxide fuel cells (SOFCs). This paper presents a detailed characterization of the thermophysical and radiative properties of the composite materials, which are then used to define a simple 2D model incorporating the heat transfer characteristics of the electrode and electrolyte layers of a typical planar SOFC. Subsequently, the importance of thermal radiation is assessed by comparing the temperature field obtained using a conduction model with those obtained using two coupled conduction/radiation models. Contrary to some published literature, these results show that radiation heat transfer has a negligible effect on the temperature field within these components, and does not need to be accommodated in comprehensive thermal models of planar SOFCs.  相似文献   

14.
This paper deals with the effect of the temperature dependent thermal conductivity on transient conduction and radiation heat transfer in a 2-D rectangular enclosure containing an absorbing, emitting and scattering medium. The thermal conductivity of the medium is assumed to vary linearly with temperature. The radiative part of the energy equation was solved using the collapsed dimension method. To facilitate solution of the energy equation, which is a highly nonlinear one, time linearization was done first and then the equation was solved using the alternating direction implicit scheme. Results for the effects of the variable thermal conductivity were found for temperature and heat flux distributions.  相似文献   

15.
This article deals with performance evaluation of the discrete ordinates method in terms of its capacity to provide accurate results in solving radiation mode problems with different complexities. The problem formulation is done keeping in view the heat transfer process in an evaporator used in a coal-based thermal power station. The hot gas mass in the evaporator is assumed to be a heat source with two different shapes, spherical and conical. The evaporator walls that are covered with a water cooling jacket are modeled with a convective boundary condition. The gas is assumed to be gray and absorbing–emitting. The solution of the radiative transport equation is carried out using the discrete ordinates method. Parametric studies are performed for a wide range of aspect ratio, extinction coefficient, and convective heat transfer coefficient. The code is validated by comparing the result of discrete ordinates method with the exact and the discrete transfer method for nonradiative as well as radiative equilibrium conditions.  相似文献   

16.
A comprehensive experimental investigation relevant to thermal radiation has been performed in a grate-fired test furnace. Thermal radiation is the dominating mode of heat transfer in the grate-fired furnace and yet only a few studies have focused on thermal radiation. No previous works, to the authors' knowledge, have been carried out concerning measurements on radiative heat transfer in grate-fired furnaces. In this work measurements of temperature have been carried out for all boundaries and the flue gases at a large number of locations. The gas species volume fraction, particle mass–size distributions, and wall irradiation have also been measured at a number of spatial locations. These data are useful in a computational framework to describe the radiative heat transfer reaching the boundaries. Comparing modeled wall irradiation to the measured one makes it possible to obtain a deeper insight into the thermal radiative transport inside the grate-fired furnace.  相似文献   

17.
Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.  相似文献   

18.
This article deals with analyzing the effect of radiative heat transfer on natural convection heat transfer in a square cavity under normal room conditions. The governing equations of natural convection and radiative transfer are solved simultaneously to obtain the temperature, velocity and heat flux distributions inside the participating medium. The finite volume method has been adopted to solve the governing equations and the discrete ordinates method (DOM) is used to model the radiative transfer in absorbing-emitting media. The radiative–convective model is validated by comparison with test cases solutions from the literature. Then, the effects of Rayleigh number from 102 to 106 and optical thickness in a broad range from 0 to 100 on temperature and velocity distributions and Nusselt numbers are investigated. The results show that even under normal room conditions with a low temperature difference, the radiation plays a significant role on temperature distribution and flow pattern in the cavity. Also, several interesting effects of radiation are observed such as a sweep behavior on the isotherms, streamlines and velocity distributions of the cavity along the optical thickness and a reverse behavior on maximum stream function and convective Nusselt number at different Rayleigh numbers.  相似文献   

19.
A lattice Boltzmann method (LBM) is used to solve the energy equation in a test problem involving thermal radiation and to thus investigate the suitability of scalar diffusion LBM for a new class of problems. The problem chosen is transient conductive and radiative heat transfer in a 2-D rectangular enclosure filled with an optically absorbing, emitting and scattering medium. The energy equation of the problem is solved alternatively with a previously used finite volume method (FVM) and with the LBM, while the radiative transfer equation is solved in both cases using the collapsed dimension method. In a parametric study on the effects of the conduction-radiation parameter, extinction coefficient, scattering albedo, and enclosure aspect ratio, FVM and LBM are compared in each case. It is found that, for given level of accuracy, LBM converges in fewer iterations to the steady-state solution, independent of the influence of radiation. On the other hand, the computational cost per iteration is higher for LBM than for the FVM for a simple grid. For coupled radiation-diffusion, the LBM is faster than the FVM because the radiative transfer computation is more time-consuming than that of diffusion.  相似文献   

20.
The effect of variable thermal conductivity on transient conduction and radiation heat transfer in a planar medium is investigated. Thermal conductivity of the medium is assumed to vary linearly with temperature, while the other thermophysical properties and the optical properties are assumed constant. The radiative transfer equation is solved using the discrete transfer method, (DTM) and the nonlinear energy equation is solved using an implicit scheme. Transient as well as steady state results are found for an absorbing, emitting, and anisotropically scattering gray medium. Thermal conductivity has been found to have significant effects on both transient as well as steady state temperature and heat flux distributions. Some steady state results are compared with the results reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号