首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper presents a full set of numerical methods for predicting the effective thermal conductivity of natural fibrous materials accurately, which includes a random generation-growth method for generating micro morphology of natural fibrous materials based on existing statistical macroscopic geometrical characteristics and a highly efficient lattice Boltzmann algorithm for solving the energy transport equations through the fibrous material with the multiphase conjugate heat transfer effect considered. Using the present method, the effective thermal conductivity of random fibrous materials is analyzed for different parameters. The simulation results indicate that the fiber orientation angle limit will cause the material effective thermal conductivity to be anisotropic and a smaller orientation angle leads to a stronger anisotropy. The effective thermal conductivity of fibrous material increases with the fiber length and approach a stable value when the fiber tends to be infinite long. The effective thermal conductivity increases with the porosity of material at a super-linear rate and differs for different fiber location distribution functions.  相似文献   

2.
The knowledge of physical properties, such as the thermal conductivity, plays an important role in the management of the heat transfer in fibrous materials like PEFC gas diffusion layers. Measurement of thermal conductivity by experimental means is not easy (due to the anisotropy and the high porosity), therefore the availability of experimental data is rather limited. In this paper, the numerical determination of the effective thermal conductivity of fibrous materials is investigated using a three-dimensional approach. Two different fiber geometries were studied with randomly generated fiber structures with overlapping and non-overlapping fibers. The corresponding anisotropic thermal conductivities are computed through the solution of the energy transport equation. The results were validated through a comparison with existing experimental data and the influence of different parameters such as fiber orientation, fiber diameter and binding material were investigated.  相似文献   

3.
Abstract

Application of the lattice Boltzmann method has been extended for the analysis of combined transient conduction and radiation heat transfer through highly porous fibrous insulation media. Firstly, LBM has been employed for the analysis of combined mode of transient conduction radiation heat transfer in a 2?D rectangular enclosure containing an absorbing, emitting and scattering medium and results are compared with already published ones. The results have been found in good accord for different values of radiation-conduction parameter, scattering albedo and south (hot) wall emissivity. Furthermore, the proposed LBM for the calculation of effective thermal conductivity of ceramic fiber board has been employed. A random-generation growth method for generating micro morphology of natural ceramic fiber board has been selected. The conductive, radiative and effective thermal conductivity has been numerically estimated using the present LBM. It is found that the predicted effective thermal conductivity for different values of fibrous bulk density is in good agreement with the experimental data.  相似文献   

4.
A 3D mathematical model is developed to describe coupled heat and mass transfer in woven fibrous materials with consideration of its geometrical characters. The liquid water diffusion tensor is derived by matrix transformation. The finite volume method is used to discrete the governing equations, and the obtained linear discrete equations are solved by iteratively utilizing the TDMA (Tri-Diagonal Matrix Algorithm). A high order and absolutely stable difference scheme for water vapor diffusing in fiber is developed. The processes of liquid water transfer in the yarns, water vapor in both inter-yarn and intra-yarn, and their interaction with heat transfer are illustrated by a series of 3D or 4D diagrams. The effects of porosity of the yarn ε and the fabric count on heat and mass transfer are also discussed. The predictions of temperature changes on the fabric surface are compared with experimental measurements, good agreement is observed between the two.  相似文献   

5.
A 3-dimensional unit cell model is developed for analyzing effective thermal conductivity of xonotlite-aerogel composite insulation material based on its microstructure features. Effective thermal conductivity comparisons between xonotlite-type calcium silicate and aerogel as well as xonotlite-aerogel composite insulation material are presented. It is shown that the density of xonotlite-type calcium silicate is the key factor affecting the effective thermal conductivity of xonotlite-aerogel composite insulation material, and the density of aerogel has little influence. The effective thermal conductivity can be lowered greatly by composite of the two materials at an elevated temperature.  相似文献   

6.
采用化学氧化还原法制备的石墨烯和化学气相沉积法制备的三维网状石墨烯共同作为导热填料改性环氧树脂,研究导热填料质量分数的变化对环氧树脂热导率的影响,并进一步测定复合热界面材料的热导率在高温下的稳定性。结果表明:当石墨烯-三维网状石墨烯的质量分数为0.2(石墨烯和三维网状石墨烯的比例为1∶9)时,可使环氧树脂的热导率提高2 400%;三维网状石墨烯的三维网状结构和石墨烯的表面官能团对复合热界面材料的热性能具有显著地影响;三维网状石墨烯为声子提供了快速传输通道,而石墨烯的表面官能团能促进环氧树脂与石墨烯之间形成良好的接触,降低界面热阻,在石墨烯和三维网状石墨烯的协同作用下可提高热界面材料的热导率。此外,可以通过优化导热填料的尺寸,提高复合热界面材料热导率的稳定性。  相似文献   

7.
A new structural model for a heterogeneous material with multiple continuous phases is proposed. The corresponding equation for effective thermal conductivity was derived using three methods. The new model is substantially different from the conventional five fundamental structural models (Series, Parallel, two forms of Maxwell–Eucken, Effective Medium Theory). The model has two applications. First, as a new fundamental structural model to produce composite models using the combinatory rules previously proposed by J.F. Wang, J.K. Carson, M.F. North, D. J. Cleland, A new approach to modelling the effective thermal conductivity of heterogeneous materials, International Journal of Heat and Mass Transfer, 49 (17–18) (2006) 3075–3083. Second, to narrow the bounds of the effective thermal conductivity for heterogeneous materials where the physical structure can be characterised into general classes.  相似文献   

8.
Direct numerical simulations based on a thermal Lattice–Boltzmann method are utilized to compute the effective thermal conductivity of particulate thermal interface materials (TIMs). By simulating the squeezing process, we obtain the particle distribution in a situation similar to application. Therefore, there is no need to calculate the average thermal characteristics from several pre-defined random distributions. The effects of particle volume fraction, particle size, and particle to matrix thermal conductivity ratio on the thermal performance are investigated. The results for the effective thermal conductivity are in agreement with the existing semi-analytical and experimental results reported in the literature.  相似文献   

9.
An accurate estimation of the effective thermal conductivity of various insulation materials is essential in the evaluation of heat leak and boil-off rate from liquid hydrogen storage tanks. In this work, we review the existing experimental data and various proposed correlations for predicting the effective conductivity of insulation systems consisting of powders, foams, fibrous materials, and multilayer systems. We also propose a first principles-based correlation that may be used to estimate the dependence of the effective conductivity as a function of temperature, interstitial gas composition, pressure, and structural properties of the material. We validate the proposed correlation using available experimental data for some common insulation materials. Further improvements and testing of the proposed correlation using laboratory scale data obtained using potential LH2 tank insulation materials are also discussed.  相似文献   

10.
Fibrous insulation has many applications including functional protective clothing, sleeping bags, buildings and construction, and aircrafts, particularly under extreme climatic conditions. It has been realized that reflective interlayers can be incorporated into the fibrous materials to block radiative heat transfer. However, since reflective interlayers generally have greater thermal conductivity than the bulk fibrous materials, the optimization of the construction of the fibrous insulation is important in maximizing the overall thermal insulation. In order to analyze this complex optimization problem, a two-flux radiative heat transfer model was built for the heat transfer through fibrous assemblies incorporating reflective interlayers. By using finite control volume method, the solution was obtained. After validation it was applied to predict the optimum constructional parameters of such an assembly for maximizing thermal insulation. It was found that (1) although extinction coefficient of Al-coated interlayer fibers decrease unidirectionally as the fiber diameter increases, the total heat flux first decreases and then increases with minimum heat flux at the fiber diameter of about 2 μm; Consequently, the thermal resistance reaches a maximum value when the fiber diameter d is about 2 μm; (2) the optimum construction is determined by the balance of the weakening of conductive thermal resistance and enhancement of the radiative thermal resistance as a result of incorporating thin reflective interlayers. For relatively thick reflective interlayer, the assembly with lower interlayer fiber volume fraction has a higher thermal resistance. On the other hand, for very thin reflective interlayers, relatively high fiber volume fraction is beneficial to the overall thermal insulation.  相似文献   

11.
The effective thermal conductivity of mono- and poly-dispersed random assemblies of spherical particles and irregular crystals, both dry and partially or fully saturated by wetting and non-wetting liquids, has been determined computationally by numerical solution of the Fourier’s law on 3-D reconstructed media and experimentally by the transient hot wire method. The effect of spatial distribution and volume fractions of the vapour, liquid, and solid phases on effective thermal conductivity was systematically investigated. A power-law correlation for estimating the effective conductivity, valid over a wide range of phase volume fractions and relative conductivities of components, has been proposed.  相似文献   

12.
The aim of this study is to augment thermal transport in latent heat thermal energy storage (LHTES) system by the optimum allocation of metal foam-phase change material (PCM) composite. This study emphasizes on the optimal volume and distribution of metal foam-PCM composite (MFPC) to enhance melting performance without delay in the total melting time. Therefore, a MFPC is designed according to constructal theory. The fundamental principle of the theory is to configure high thermal conductivity agents at optimal thermal energy flow path for effective heat exchange. A numerical code based on local thermal nonequilibrium approach equipped enthalpy porosity method is formulated, and evaluated. The results of the proposed configuration show that the provision of MFPC only at high local temperature gradient enhances the conductive transport with improvement in the overall thermal transport. It is derived that the elimination of metal foam volume at low temperature gradient incorporates the advantageous effect of natural convective transport, which is seen to be suppressed. Additionally, the proposed configuration may increase the volume of PCM, thus, the TES capacity. It also reduces the total weight and economy of energy storage system. The overall melting rate is improved by 11.11% in comparison with the LHTES with full volume of this high thermal conductivity agent.  相似文献   

13.
Thermal energy storage (TES) based on phase change materials (PCMs) has become a research hot spot due to its high energy storage density and maintained operating temperature during the phase change. However, as PCM has a poor thermal conductivity that can be as low as 0.2~0.5 W/m· K, the charging/discharging processes of PCM modules are significantly restrained, which severely affects the application of the TES technology in industrial sectors. This study concerns the improvement of the effective thermal conductivity of composite PCM formed by adding nanoparticles with high thermal conductivity into different PCMs. A theoretical model is established to reveal the intrinsic mechanism for the promotion of thermal conductivity of composite PCM consisting of nanoparticles. The results show that aggregation and interfacial thermal resistance are the main reasons for the change of the thermal conductivity. By forming effective conduction paths composed of backbones in the composite PCM, the average thermal conductivity can be improved significantly, which can be as high as 10~50 W/m· K with a wide range of volume fraction of the additives.  相似文献   

14.
The effective thermal conductivity in the volume-averaged temperature equation for the dual-scale porous media is estimated numerically. A finite-element simulation of a steady Newtonian flow in the unit cell of an idealized dual-scale porous medium is carried out and the relevant component of the effective thermal conductivity tensor is estimated from the resultant temperature and velocity fields. It is discovered that the conductivity is a strong function of Péclet number as well as inter-tow spacing, but is insensitive to the rate of tow wetting or the heat-flux from tows. We also conclude that the conductivity remains unchanged in the saturated as well as unsaturated flow regimes in dual-scale porous media.  相似文献   

15.
The lattice thermal conductivity of compact random silicon and germanium nanowire composites was investigated by using a Monte-Carlo (MC) simulator, which was developed based on the gray medium approximation and unstructured grids. By defining the local equilibrium temperature as the one which preserves the local phonon energy in the interested heterogeneous subregion, we are able to obtain the effective thermal conductivity of random nanowire composites and explore the effects of the wire shape and the composition concentration on it. The results show that among the three kinds of wire shapes investigated – triangle, quadrangle, and voronoi, the random quadrilateral nanowire composites are the best thermal conductor under a fixed interface density or a fixed characteristic wire size and that the dependence of the effective thermal conductivity on the silicon volume concentration is approximately parabolic. The influences of these two factors are equally strong. Moreover, the parabolic dependence can be well explained by the effective medium approximation model for three bond percolation systems.  相似文献   

16.
To investigate the natural convective process in a hydrodynamically and thermally anisotropic porous medium at the representative elementary volume(REV) scale, the present work presented a multiplerelaxation-time lattice Boltzmann method(MRT-LBM) based on the assumption of local thermal non-equilibrium conditions(LTNE). Three sets of distribution function were used to solve the coupled momentum and heat transfer equations. One set was used to compute the flow field based on the generalized non-D...  相似文献   

17.
A two-dimensional numerical model is presented to examine meso- and macroscopic structure effects on the effective thermal conductivity of concrete. The heterogeneity of concrete is considered at a mesoscopic level by Weibull distribution assumption. Simulations on several heterogeneous samples show that the effective thermal conductivity strongly depends on the degree of heterogeneity. Higher homogeneity indicates a greater effect on the effective thermal conductivity. Numerically simulated results also indicate that the size and shape of individual coarse aggregate appear to have negligible influence on the effective thermal conductivity of concrete. However, that greatly depends on the thermal conductivity and volume fraction of coarse aggregate. Modeling suggests that heat conductivity decreases when there is a drop in strength due to the damages creating a thermal barrier across the cracks and thus preventing heat flow through the matrix, that is, resulting in reduction of effective thermal conductivity. Moreover, the formation of cracks in the interfacial transition zone also leads to significant reduction of heat flow in coarse aggregates.  相似文献   

18.
保温用天然生物质材料的热湿特性   总被引:1,自引:0,他引:1  
实验分析一些廉价天然材料(椰壳和花生壳)的导热特性。利用同心球稳态测量方法测量确定椰壳和花生壳的导热系数,以及导热系数随温度的变化规律,同时以硅酸铝纤维材料为标准试样,与天然材料的导热性能进行对比分析。还对这些材料的低温吸湿作了初步测试,分析此类材料作为低温绝热材料的吸湿特性。研究结果表明,所有材料的导热系数均随温度的升高而增大,且增大速率都近似相等。影响天然生物质材料导热性质的因素主要有:纤维或多孔固体材料中的导热、孔隙中空气的对流换热,如果温度足够高的话,还有辐射换热。  相似文献   

19.
Clothing materials may be considered composite materials composed of fiber, air, and moisture. For this paper, effective thermal conductivities of wet clothing materials were analyzed numerically using a proposed heat transfer model. The following simplifications were introduced. The clothing material fiber is woven with a single yarn, there is no air movement between fibers, and mass transfer is neglected. Numerical calculations were made using finite difference equations for steady three-dimensional heat conduction for several composite materials representing wet clothing materials. The main results obtained were as follows. The effective thermal conductivity of wet clothing material increases as the thermal conductivity of the yarn and the moisture content increase. We found that our numerical results agree qualitatively with those previously measured. The effective thermal conductivity of a wet layered material depends on the distribution of moisture and attains a maximum in the wet layer. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(3): 243–254, 1998  相似文献   

20.
郭茶秀  王闯 《新能源进展》2014,2(2):146-150
大多数相变储能材料导热性能差是导致其不能推广应用的一个重要因素,因此,目前相变材料研究的重点是提高相变材料的等效导热系数。石墨泡沫由于其特殊的微蜂窝三维结构,使其具有良好的传热性能,在储能领域有很好的应用前景。国内外学者对利用石墨泡沫的强化相变传热进行了一些研究,本文主要介绍了近几年石墨泡沫/相变材料的国内外实验研究和数值模拟研究进展和存在的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号