首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anuj Kumar 《传热工程》2013,34(18):1540-1551
The present study is concerned with the simulation of incompressible Newtonian fluid flow and heat transfer over a long semicircular bluff body in a channel at low Reynolds numbers. In particular, wall effects on the forced convection from a (heated) semicircular cylinder confined in a horizontal channel are investigated for Reynolds number = 1–40 and blockage ratio = 16.67–50% for air as the working fluid. Flow and thermal fields are found steady for the preceding range of settings. The onset of flow separation increases as the wall confinement increases. The size of the recirculation zone downstream of a semicircular cylinder is seen to increase almost linearly with Reynolds number for a fixed blockage ratio, but it decreases with increasing blockage ratio for a fixed Reynolds number. As expected, total drag coefficient and its components decrease with increasing value of Reynolds number. However, with increasing blockage ratio, the values of these drag coefficients increase. On the basis of equal projected area, the total drag coefficient for the present flow system is found to be greater than the corresponding drag in the case of the unconfined semicircular cylinder. Similarly, the overall drag in the case of a confined semicircular cylinder is found to be greater than that of a confined circular cylinder for the appropriate range of dimensionless control parameters. The maximum augmentation in heat transfer for blockage ratios of 25% and 50% is found to be approximately 16% and 51% with respect to the corresponding value at the blockage ratio of 16.67% at Reynolds number = 1. Finally, the correlations of wake length, drag coefficient, and average Nusselt number are obtained.  相似文献   

2.
Numerical investigation of fluid flow and heat transfer characteristics over louvered fins and flat tube in compact heat exchangers is presented in this study. Three-dimensional simulations of single and double row tubes with louvered fins have been conducted. Simulations are performed for different geometries with varying louver pitch, louver angle, fin pitch and tube pitch and for different Reynolds number. Conjugate heat transfer and conduction through the fins are considered. The air-side performance of heat exchanger is evaluated by calculating Stanton number and friction factor. The results are compared with experiment and a good agreement is observed. The local Nusselt number variation along the top surface of the louver is calculated and effects of geometrical parameters on the average heat transfer coefficient is computed. Design curves are obtained which can used to predict the heat transfer and the pressure drop for a given louver geometry.  相似文献   

3.
A numerical study on the buoyancy-assisted flow and heat transfer from a liquid spherical droplet falling in fluid medium is made. The investigation is based on the solution of the Navier-Stokes equations together with the energy equation inside and outside the droplet, along with a suitable interface condition. The governing equations for three-dimensional flow and heat transfer are solved through the pressure correction based iterative algorithm, SIMPLE. The Reynolds number for the exterior flow is considered below 300 with the Richardson number in the range 0 ≤ Ri ≤ 1.5. The form of the wake due to the viscous droplet and its influence on heat transfer and drag coefficient are analyzed for a wide range of physical parameters. It is found that by increasing the Reynolds number, the predicted rate of heat transfer is significantly increased for a liquid droplet compared to a solid sphere. The increment of viscosity of the droplet increases the drag experienced by the droplet but reduces the rate of heat transfer. An increase in Richardson number produces an increment in drag coefficient as well as in heat transfer. In order to establish a simplified model for heat transfer due to a viscous droplet, we compared our computed solutions with several empirical correlations for conjugate heat transfer and proposed a model (in absence of buoyancy). We have also investigated the validity of several empirical correlations for the drag coefficient.  相似文献   

4.
Experimental investigations in fluid flow and heat transfer have been carried out to study the effect of wall proximity due to flow separation around rectangular prisms. Experiments have been carried out for the Reynolds number 2.6 × 104, blockage ratios are 0.1, 0.2, 0.3, and 0.4, aspect ratios (d/c) are 1.5, 1.33, 0.667, and 0.333, with different height‐ratios and various angles of attack. The static pressure distribution has been measured on all faces of the rectangular prisms. The results have been presented in the form of pressure coefficient, drag coefficient for various height‐ratios and blockage ratios. The pressure distribution shows positive values on the front face whereas on the rear face negative values of the pressure coefficient have been observed. The drag coefficient decreases with the increase in angle of attack as the height‐ratio decreases. The heat transfer experiments have been carried out under constant heat flux conditions. Heat transfer coefficients are determined from the measured wall temperature and ambient temperature and presented in the form of a Nusselt number. Both local and average Nusselt numbers have been presented for various height‐ratios. The variation of the local Nusselt number has been shown with nondimensional distance for different angles of attack and blockage ratios. The variation of the average Nusselt number has also been shown with different angles of attack for blockage ratios. The local as well as average Nusselt number decreases as the height‐ratio decreases for all nondimensional distances and angles of attack, respectively, for rectangular prisms. Empirical correlations for the average Nusselt number have been presented for a rectangular prism as a function of the Reynolds number, Prandtl number and relevant nondimensional parameters.  相似文献   

5.
Experimental and numerical investigation of heat transfer and fluid flow were conducted for classic heat exchanger elements (flat plate with fin-tubes in-line, staggered and with vortex generators) and corrugated-undulated ducts under transitional and weakly turbulent conditions.The dependence of average heat transfer and pressure drop on Reynolds number and geometrical parameters was investigated. Distributions of local heat transfer coefficient were obtained by using liquid crystal thermography and surface-averaged values were computed. Three-dimensional numerical simulations were conducted by a finite-volume method using a low-Reynolds number k-e model under the assumption of fully developed flow. Computed flow fields provided otherwise inaccessible information on the flow patterns and the mechanisms of heat transfer enhancement.  相似文献   

6.
The evaluation of heat transfer and pressure drop in a water flow inside an annulus of a double concentric-tube heat exchanger with spiral wires inserts was carried out. Three spiral wires with a constant pitch and different wire diameter were tested for a Reynolds number from 1500 to 5500 and a Prandtl number from 5 to 8. The results obtained showed that the spiral wires increased the heat transfer and the pressure drop in comparison with a fluid flow inside a smooth annulus. From the heat transfer point of view, this increase was proportional to the wire diameter but the effect decreases when the Reynolds number increases. General empirical correlations based on dimensionless parameters to calculate the convective heat transfer coefficient and friction factor were developed with an uncertainty of ±6.1% and ±7.6%, respectively, when these estimates were compared against experimental data. The empirical correlations developed were also compared with the estimates calculated by empirical correlations proposed by other researchers, resulting in a good agreement with these values. After the validation analysis, it was demonstrated that the new equations developed provide a good and reliable tool for the design of double concentric-tube heat exchangers with spiral wires inserted inside annulus.  相似文献   

7.
纪律  李斌 《节能》2010,29(11):29-32
同时对普通翅片管和带有两个短肋的翅片管在均匀流场中、不同雷诺数下进行了流场和传热的数值模拟,分析了带有短肋的翅片管强化传热的机理。结果表明,由于翅片上带有的短肋和短肋后面的开孔,减少了翅片管管后流动的死滞区,提高了局部地区流体的流速,增加了扰动,从而起到了强化传热的作用。取入口雷诺数为20000时,加装短肋后可使总传热量增加5.1%,平均表面传热系数增加23.56%。随着雷诺数的增加,总换热量增加,强化传热效果也增强。  相似文献   

8.
Fouling is one of the main problems of heat transfer which can be described as the accumulation on the heat exchanger tubes, i.e.; ash deposits on the heat exchanger unit of the boiler. A decrease in heat transfer rate by this deposition causes loss in system efficiency and leads to increasing in operating and maintenance costs. This problem concerns with the coupling among conduction heat transfer mode between solid of different types, conjugate heat transfer at the interface of solid and fluid, and the conduction/convection heat transfer mode in the fluid which can not be solved analytically. In this paper, fouling effect on heat transfer around a cylinder in cross flow has been studied numerically by using conjugate heat transfer approach. Unlike other numerical techniques in existing literatures, an unstructured control volume finite element method (CVFEM) has been developed in this present work. The study deals with laminar flow where the Reynolds number is limited in the range that the flow field over the cylinder is laminar and steady. We concern the fouling shape as an eccentric annulus with constant thermal properties. The local heat transfer coefficient, temperature distribution and mean heat transfer coefficient along the fouling surface are given for concentric and eccentric cases. From the results, we have found that the heat transfer rate of cross-flow heat exchanger depends on the eccentricity and thermal conductivity ratio between the fouling material and fluid. The effect of eccentric is dominant in the region near the front stagnation point due to high temperature and velocity gradients. The mean Nusselt number varies in asymptotic fashion with the thermal conductivity ratio. Fluid Prandtl number has a prominent effect on the distribution of local Nusselt number and the temperature along the fouling surface.  相似文献   

9.
In this paper, fluid flow and heat transfer across a long equilateral triangular cylinder placed in a horizontal channel is studied for Reynolds number range 1–80 (in the steps of 5) and Prandtl number of 0.71 for a fixed blockage ratio of 0.25. The governing Navier-Stokes and energy equations along with appropriate boundary conditions are solved by using a commercial CFD solver FLUENT (6.3). The computational grid is created in a commercial grid generator GAMBIT. The flow and temperature fields are presented by stream-line and isotherm profiles, respectively. The wake/recirculation length, mean drag coefficient and average Nusselt number, etc. are calculated for the above range of conditions studied here. The critical value of the Reynolds number (i.e., transition to transient) is found to lie between Re = 58 and Re = 59. The average Nusselt number and the wake length increase with increasing value of the Reynolds number; however, the mean drag coefficient decreases with increasing value of the Reynolds number. Finally, simple correlations for wake length, mean drag coefficient and average Nusselt number are obtained for the range of conditions studied here.  相似文献   

10.
为了提高折流板换热器的换热性能,改变了折流板换热器的折弯夹角和折流板间距,利用ANSYS Fluent对换热器壳程流体流动与换热过程进行模拟,分析了不同折流板折弯夹角α (110°,135°,170°和180°)、折流板间距(250,300和350 mm)和雷诺数(10 000,20 000和50 000)对换热器壳程压力、速度和温度的影响。结果表明:增大雷诺数对改善流动死区有很大的作用,雷诺数为50 000时的流动死区相对于雷诺数为10 000时面积减小较大;随着夹角α的减小,折流板背流侧的流动死区面积逐渐减小、换热器的表面传热系数和进出口压降力越大,夹角α为110°时出口温度最小、进出口压降最大,夹角α为135°时PEC最大且换热器综合性能最优;折流板间距增大,压力变化梯度减小,压差变化幅度减小,壳程出口温度变化不成正比关系,间距为300 mm时出口温度最低。  相似文献   

11.
Shell and tube heat exchanger is one of the most prevalent heat exchangers with a wide variety of industrial applications, i.e., power plants, chemical processes, marine industries, HVAC systems, cooling of hydraulic fluid and engine oil in heavy duty diesel engines and the like specifically where a need to heat or cool a large fluid volume exist and also higher-pressure use. In the present study, the effect of using Al2O3-water nanofluid on thermal performance of a commercial shell and tube heat exchanger with segmental baffles is assessed experimentally. For this purpose, Al2O3-gamma nanoparticles with 15 nm mean diameter (99.5% purity) and Sodium Dodecyl Benzene Sulphonate (SDBS) as surfactant are used to make aqueous Al2O3 nanofluid at three various volume fractions of nanoparticles (φ = 0.03, 0.14 and 0.3%). Indeed, in this paper the effect of some parameters of hot working fluid such as Reynolds number and volume concentration of nanoparticles on heat transfer characteristics, friction factor and thermal performance factor of a shell and tube heat exchanger under laminar flow regime is investigated. The results indicate a substantial increment in Nusselt number as well as the overall heat transfer coefficient of heat exchanger by enhancement of Reynolds number and it can be seen that, at a certain Reynolds number, heat transfer characteristics of heat exchanger increase as the nanoparticles volume concentration increases. Outcomes of the heat transfer evaluation demonstrate that applying nanofluids instead of base fluid lead to increment of Nusselt number up to 9.7, 20.9 and 29.8% at 0.03, 0.14 and 0.3 vol%, respectively. Likewise it is seen that at mentioned nanoparticles volume fractions, overall heat transfer coefficient of heat exchanger enhances around 5.4, 10.3 and 19.1%, respectively. In term of pressure drop, a little penalty is found by using nanofluid in the test section. Eventually a thermal performance assessment on the heat exchanger was conducted. According to the analysis results, utilizing nanofluid at minimum and maximum nanoparticles volume fractions (φ = 0.03 and 0.3%) results in average augmentation of around 6.5% and 18.9% in thermal performance factor (η) of the heat exchanger compared to the base liquid, respectively.  相似文献   

12.
A numerical investigation is conducted to analyze the steady and unsteady laminar flow and heat transfer in a channel with two square bars (of equal diameters) arranged side-by-side. The analysis is carried out for Reynolds number = 10–100, Prandtl number = 0.7–50, for transverse separation distance between the bars (i.e., gap ratio) of 1.5, 2, 2.5, 5, and 10 at the blockage ratio of 1/18. The results found here are in good agreement with previously published data. The effects of gap ratio, Reynolds number, and Prandtl number on the detailed kinematics of the flow and the heat transfer are presented. The engineering parameters such as total drag coefficient, average Nusselt number, and Strouhal number are calculated for the preceding range of conditions. It is observed that the overall drag coefficient decreases with increasing Reynolds number, whereas the average Nusselt number for the square cylinders increases with increasing Reynolds number and/or Prandtl number for all the values of gap ratios studied. The percentage enhancement in the value of the average Nusselt number is found to be more than 76% for the range of settings covered here.  相似文献   

13.
The augmentation of convective heat transfer in a single-phase turbulent flow by using helically corrugated tubes has been experimentally investigated. Effects of pitch-to-diameter ratio (P/DH = 0.18, 0.22 and 0.27) and rib-height to diameter ratio (e/DH = 0.02, 0.04 and 0.06) of helically corrugated tubes on the heat transfer enhancement, isothermal friction and thermal performance factor in a concentric tube heat exchanger are examined. The experiments were conducted over a wide range of turbulent fluid flow of Reynolds number from 5500 to 60,000 by employing water as the test fluid. Experimental results show that the heat transfer and thermal performance of the corrugated tube are considerably increased compared to those of the smooth tube. The mean increase in heat transfer rate is between 123% and 232% at the test range, depending on the rib height/pitch ratios and Reynolds number while the maximum thermal performance is found to be about 2.3 for using the corrugated tube with P/DH = 0.27 and e/DH = 0.06 at low Reynolds number. Also, the pressure loss result reveals that the average friction factor of the corrugated tube is in a range between 1.46 and 1.93 times over the smooth tube. In addition, correlations of the Nusselt number, friction factor and thermal performance factor in terms of pitch ratio (P/DH), rib-height ratio (e/DH), Reynolds number (Re), and Prandtl number (Pr) for the corrugated tube are determined, based on the curve fitting of the experimental data.  相似文献   

14.
The present study explored the effects of perforated double counter twisted tapes on heat transfer and fluid friction characteristics in a heat exchanger tube. The twisted tapes with four different porosities of Rp = 1.2, 4.6, 10.4 and 18.6% were used as counter-swirl flow generators in the test section. The experiments were conducted in a circular tube in turbulent flow regime with Reynolds number ranging from 7200 to 50,000 using air as the working fluid under uniform wall heat flux boundary condition. The experimental results demonstrated that the Nusselt number, friction factor and thermal enhancement efficiency were increased with decreasing porosity except porosity of 1.2%. The results also revealed that the heat transfer rate of the tube fitted with tapes were significantly increased with corresponding increase in friction factor. In the range of the present investigation, heat transfer rate and friction factor were obtained to be around 80 to 290% and 111 to 335% higher than those of the plain tube values, respectively. Based on constant blower power, the highest thermal enhancement efficiency of 1.44 was achieved. In addition, the empirical correlations of Nusselt number, friction factor and thermal enhancement efficiency were developed based on the experimental data.  相似文献   

15.
Three-dimensional simulations of four louver-tube junction geometries are performed to investigate the effect on louver and tube friction and heat transfer characteristics. Three Reynolds numbers, 300, 600 and 1100, based on bulk velocity and louver pitch are calculated. Strong three-dimensionality exists in the flow structure in the region where the angled louver transitions to a flat landing adjoining the tube surface, whereas the flow on the angled louver far from the tube surface is nominally two-dimensional. Due to the small spatial extent of the transition region, its overall impact on louver heat transfer is limited, but the strong unsteady flow acceleration on the top louver surface augments the heat transfer coefficient on the tube surface by over 100%. In spite of the augmentation, the presence of the tube lowers the overall Nusselt number of the heat exchanger between 25% and 30%. Comparisons with correlations derived from experiments on full heat exchanger cores show that computational modeling of a small subsystem can be used reliably to extract performance data for the full heat exchanger.  相似文献   

16.
This work extends our previously reported results for the flow of and heat transfer from expanded beds of solid spheres to power–law fluids by using a modified and more accurate numerical solution procedure. Extensive results have been obtained to elucidate the effects of the Reynolds number (Re), the Prandtl number (Pr), the power–law index (n), and the bed voidage (ε) on the flow and heat transfer behavior of assemblages of solid spheres in the range of parameters: 1 ≤ Re ≤ 200, 1 ≤ Pr ≤ 1000, 0.6 ≤n ≤ 1.6, and 0.7 ≤ε ≤ 0.999999. The large values of bed voidage are included here to examine the behavior in the limit of an isolated sphere. As compared to Newtonian fluids, for fixed values of the Reynolds number and the voidage, the total drag coefficient decreases and the average Nusselt number increases for shear thinning fluids (n < 1); whereas, for shear thickening fluids (n > 1), the opposite behavior is observed. The drag results corresponding to bed voidage, ε = 0.99999, are very close to that of a single sphere; whereas, the heat transfer results approach this limit at ε = 0.999. Based on the present numerical results, simple correlations for drag coefficient and average Nusselt number are proposed which can be used to calculate the pressure drop for the flow of a power–law fluid through a bed of particles, or rate of sedimentation in hindered settling and the rate of heat transfer in assemblages of solid spheres in a new application. Broadly speaking, all else being equal, shear-thinning behavior promotes heat transfer, whereas shear-thickening behavior impedes it.  相似文献   

17.
In this work the effect of the elbow-bend geometry and the effect of the tube arrangement on the performance of air-to-water heat exchanger is studied experimentally. In elbow-bend heat exchanger, the direction of the working fluid is bended at 90 degrees to its inlet direction. The heating or cooling fluid flows inside straight tubes while the working fluid flows past the tubes along an elbow pass. Three different types of the geometry of the elbow with three different tube bank arrangements were studied. The results were plotted and analyzed to clarify the effects of the elbow-bend geometry, the tube bank arrangements and the dead volume in the heat exchanger on the heat transfer and pressure drop. Two empirical correlations were deduced for each design, one to predict the relation between Nusselt and Reynolds numbers, while the other relation is between the friction factor and Reynolds number. This work was done to select the more suitable design to be used as a heater or a cooler in Stirling machines.  相似文献   

18.
The air inlet flow direction is not orthogonal to the heat exchanger surface in many cases. To study the performance of the heat transfer and pressure drop of a heat exchanger with different air inlet angles, this paper shows the experimental system about a finned oval-tube heat exchanger inclined toward the air incoming flow direction. The heat transfer and pressure drop characteristics of four air inlet angles (90°, 60°, 45°, and 30°) are studied separately for the Reynolds number ranging from 1300 to 13000 in this study. The experimental correlations of Nusselt number and resistance coefficient of the air side are acquired. The results show that the overall heat transfer coefficients become smaller and smaller with the decrease of the air inlet angles, while the pressure drops have significant changes. The heat transfer performances of the heat exchanger under the three inclined air inlet angles are worse than that at 90°. Among the three inclined angles, the performance at 45° is the best under identical mass flow rate criterion and at low Reynolds number under identical pressure drop criterion; that at 60° is the best at large Reynolds under identical pressure drop criterion. Finally, some conclusions are attained about the effects of the air inlet angles on the heat transfer and pressure drop performance of the finned oval-tube heat exchanger.  相似文献   

19.
Heat transfer coefficient and friction factor of TiO2 nanofluid flowing in a double pipe heat exchanger with and without helical coil inserts are studied experimentally. The experiments are conducted in the range of Reynolds number from 4000 to 15,000 and in the volume concentration range from 0.0004% to 0.02%. The base fluid is prepared by considering 40% of ethylene glycol and 60% of distilled water. The heat transfer coefficient and friction factor get enhanced by 10.73% and 8.73% for 0.02% volume concentration of nanofluid when compared to base fluid flowing in a tube. Heat transfer coefficient and friction factor further get enhanced by 13.85% and 10.69% respectively for 0.02% nanofluid when compared to base fluid flowing in a tube with helical coil insert of P/d = 2.5. The measured values of heat transfer coefficient and friction factor are compared with the published literature. Based on the experimental data, generalized correlations are proposed for Nusselt number and friction factor. The results are presented in graphical and tabular form. Uncertainty analysis is also carried out and the experimental error is in the range of ± 10%.  相似文献   

20.
In this article, forced convection heat transfer with laminar and developed flow for water-Al2O3 nanofluid inside a circular tube under constant heat flux from the wall was numerically investigated using computational fluid dynamics method. Both single and two-phase models are accomplished for either constant or temperature dependent properties. For this study nanofluids with size particles equal to 100 nm and particle concentrations of 1 and 4 wt% were used. It is observed that the nanoparticles when dispersed in base fluid such as water enhance the convective heat transfer coefficient. The Nusselt number and heat transfer coefficient of nanofluids were obtained for different nanoparticle concentrations and various Reynolds numbers. Heat transfer was enhanced by increasing the concentration of nanoparticles in nanofluid and Reynolds number. Also, a correlation based on the dimensionless numbers was obtained for the prediction the Nusselt number. The modeling results showed that the predicted values were in very good agreement with reference experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号