首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new model is developed to describe the heat transfer mechanism in nucleate pool boiling on a microconfigured composite surface. Both the microlayer and macrolayer thickness are determined from the model. This model can be extended to explain the nucleate boiling on plain surfaces. The enhancement mechanisms of heat transfer for the nucleate boiling on the microconfigured surface are analyzed.  相似文献   

2.
INTanDUCTI0NBoilingheattransferandcriticalheatflux(CHF)inaconfinednarrowspacehavebeenstudiedexperi-melltallybyanumberofinvestigatorsinthepastfewdecades.However,thereisnoanypopularlyacceptedmodelintheheattransferinnarrowspaceboiling,althoughsomepopularknowledgeabouttheboilingheattransferinthenarrowspacehavebeenacceptedbymanyresearchers.Theknowledgecanbecon-cludedasthatthenucleateboilingheattransferisenhancedatlowheatfluxregionanddeterioratedathighheatfiuxregi0nespeciallyatCHF.Theenhanceme…  相似文献   

3.
The multidimensional heat transfer and fluid flow in the microlayer region below a vapor bubble formed during boiling in microgravity are investigated by numerically solving the Navier–Stokes equations with the energy equation. The flow is driven by Marangoni flow due to the surface tension gradient along the bubble surface that results from the temperature gradient. The model also includes condensation and evaporation at the bubble surface. The flow field and heat transfer are calculated for microlayer thicknesses from 0.01 mm to 10 mm to investigate the effect of microlayer thickness. The results show that the velocities are small and have only a small effect on the temperature distribution as compared to the solution for pure conduction in the liquid. Natural convection is shown to have a negligible effect on heat transfer. For less than ideal evaporative heat transfer at the bubble interface, Marangoni convection caused the heat transfer to increase several percent. The flow in the microlayer is shown to agree with the lubrication analogy only for thin, relatively flat interfaces. © 2000 Scripta Technica, Heat Trans Asian Res, 30(1): 1–10, 2001  相似文献   

4.
Nucleate boiling heat transfer and bubble dynamics in a thin liquid film on a horizontal rotating disk were studied. A series of experiments were conducted to determine the heat transfer coefficient on the disk. At low rotation and flow rates, vigorous boiling increased the heat transfer coefficients above those without boiling. Higher rotational speeds and higher flow rates increased the heat transfer coefficient and suppressed boiling by decreasing the superheat in the liquid film. The flow field on the disk, which included supercritical (thin film) flow upstream of a hydraulic jump, and subcritical (thick film) flow downstream of a hydraulic jump, affected the type of bubble growth. Three types of bubble growth were identified. Vigorous boiling with large, stationary bubbles were observed in the subcritical flow. Supercritical flow produced small bubbles that remained attached to the disk and acted as local obstacles to the flow. At low rotational rates, the hydraulic jump that separated the supercritical and subcritical regions produced hemispherical bubbles that protruded out of the water film surface and detached from the disk, allowing them to slide radially outward. A model of the velocity and temperature of the microlayer of water underneath these sliding bubbles indicated that the microlayer thickness was approximately 1/25th of that of the surrounding water film. This microlayer is believed to greatly enhance the heat transfer rate underneath the sliding bubbles.  相似文献   

5.
A new dynamic microlayer model has been proposed to predict theoretically the heat flux in fully developed nucleate boiling regions including critical heat flux (CHF). In this model, the heat transfer with boiling is mainly attributed to the evaporation of the microlayers which are periodically formed while the individual bubbles are forming. Since the initial microlayer thickness becomes thinner with the increase of wall superheat, both the local evaporation and the partial dryout speed of the microlayer increase. As a result, the time-averaged heat flux during the period of individual bubble has a maximum point, the CHF, at the predicted continuous boiling curve.  相似文献   

6.
This paper presents a non-heating experimental method that simulates the critical heat flux (CHF) phenomenon in pool boiling. In the experiments, with providing controlled air flow through the holes on a plate submerged in a pool of water, the liquid sublayer (macrolayer) thickness and bubble departure frequency have been successfully measured by a conductance probe. The CHF is reasonably predicted by applying the measured parameters to a liquid macrolayer dryout model. The measured trends of the macrolayer thickness and bubble departure frequency with air mass flux are also consistent with the present understanding. As a result of this experimental study, it is expected that the non-heating method would be useful to investigate the various parametric effects on pool and flow boiling CHF, with avoiding the difficulty in heating and large electric power requirement even for complex geometries.  相似文献   

7.
The subject of the present study is to relate the boiling heat transfer process with experimentally observed bubble behaviour during subcooled flow boiling of water in a vertical heated annulus. It presents an attempt to explain the transition from partial to fully developed flow boiling with regard to bubble growth rates and to the time that individual bubbles spend attached to the heater surface.Within the partial nucleate boiling region bubbles barely change in size and shape while sliding a long distance on the heater surface. Such behaviour indicates an important contribution of the microlayer evaporation mechanism in the overall heat transfer rate. With increasing heat flux, or reducing flow rate at constant heat flux, bubble growth rates increase significantly. Bubbles grow while sliding, detach from the heater, and subsequently collapse in the bulk fluid within a distance of 1-2 diameters parallel to the heater surface. This confirms that bubble agitation becomes a leading heat transfer mode with increasing heat flux. There is however, a sharp transition between the two observed bubble behaviours that can be taken as the transition from partial to fully developed boiling. Hence, this information is used to develop a new model for the transition from partial to fully developed subcooled flow boiling.  相似文献   

8.
Significant efforts have been made to augment nucleate boiling by surface modification with micro-machined structures, but a general predictive approach for heat transfer enhancement has not yet been developed. In this work, complete numerical simulations are performed for boiling enhancement on a microstructured surface by employing the sharp-interface level-set method, which is modified to handle the contact angle and the evaporative heat flux from the liquid microlayer on an immersed solid surface. The effects of cavity diameter and surface modification such as concentric grooves and multi-step cavities on bubble growth and boiling heat transfer are investigated.  相似文献   

9.
This paper is the second part of a two-part study concerning the dynamics of heat transfer during the nucleation process of FC-72 liquid. The experimental findings on the nature of different heat transfer mechanisms involved in the nucleation process were discussed in part I. In this paper, the experimental results are compared with the existing boiling models. The boiling models based on dominance of a single mechanism of heat transfer did not match the experimental results. However, the Rohsenow model was found to closely predict the heat transfer through the microconvection mechanism that is primarily active outside the bubble/surface contact area. An existing transient conduction model was modified to predict the surface heat transfer during the rewetting process (i.e. transient conduction mechanism). This model takes into account the gradual rewetting of the surface during the transient conduction process rather than a simple sudden surface coverage assumption commonly used in the boiling literature. The initial superheat energy of the microlayer (i.e. microlayer sensible energy) was accurately calculated and found to significantly contribute in microlayer evaporation. This even exceeded the direct wall heat transfer to microlayer at high surface superheat temperatures. A composite model was introduced that closely matches our experimental results. It incorporates models for three mechanisms of heat transfer including microlayer evaporation, transient conduction, microconvection, as well as their influence area and activation time. The significance of this development is that, for the first time, all submodels of the composite correlation were independently verified using experimental results.  相似文献   

10.
The present work is to numerically investigate the effect of heater side factors on the nucleate boiling at high heat flux, which is characterized by the existence of macrolayer. Two-region equations are proposed to study both thermo-capillary driven flow in the liquid layer and heat conduction in the solid wall. The numerical results indicate that the thermo-capillary driven flow in the macrolayer and evaporation at the vapor-liquid interface constitute a very efficient heat transfer mechanism to explain the high heat transfer coefficient of nucleate boiling heat transfer near CHF. For a very thin wall and/or wall with a poor thermal conductivity (heat side factors) are found to have significant effect on flow pattern in the liquid layer and the temperature distribution in the heated wall.  相似文献   

11.
In nucleate boiling at high heat flux, a liquid layer, known as the ‘macrolayer’, is trapped between the heating surface and the vapour masses. An analysis of the mechanism of formation of this macrolayer is presented. Based on the analysis, a theoretical expression has been derived for the initial thickness of the macrolayer. The agreement between the theoretical values of the initial macrolayer thickness and the experimental values published in the literature is reasonably good.  相似文献   

12.
An analytical model for transient pool boiling heat transfer was developed in this study. The boiling curves of the transient boiling were obtained based on the microlayer model proposed by the authors and the mechanism of transition from the non-boiling regime to film boiling, i.e., direct transition was theoretically examined. Since the nucleate boiling heat flux is mainly due to the evaporation of the microlayer and its initial thickness decreases rapidly with increasing superheat, the duration of nucleate boiling is markedly decreased as the incipient boiling superheat is increased. It is found that the direct transition is closely connected to the rapid dryout of the microlayer which occupies almost the whole surface at high wall superheat.  相似文献   

13.
NucleatePoolBoilingofPureLiquidsandBinaryMixtures:PartI-AnalyticalModelforBoilingHeatTransferofPureLiquidsonSmoothTubesGuoqin...  相似文献   

14.
A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtures. A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure liquids on smooth tubes. Using the general model and the bubble growth model for pure liquids, an analytical model for nucleate pool boiling heat transfer of pure liquids on smooth tubes is developed.  相似文献   

15.
A numerical approach is presented for analysis of bubble growth and departure from a microcavity during nucleate boiling. The level-set formulation for tracking the phase interfaces is modified to include the effect of phase change on the liquid–vapor interface and to treat the no-slip and contact angle conditions on the immersed (or irregularly shaped) solid surface of the microcavity. Also, the formulation is coupled with a simple and efficient model for predicting the evaporative heat flux from the liquid microlayer on an immersed solid surface. The effects of cavity size and geometry on the bubble growth and departure in nucleate boiling are investigated.  相似文献   

16.
Pool boiling on surfaces where sliding bubble mechanism plays an important role has been studied. The heat transfer phenomenon for such cases has been analysed. The model considers different mechanisms such as latent heat transfer due to microlayer evaporation, transient conduction due to thermal boundary layer reformation, natural convection and heat transfer due to the sliding bubbles. Both microlayer evaporation and transient conduction take place during the sliding of bubbles, which occurs in geometries such as inclined surfaces and horizontal tubes. The model has been validated against experimental results from literature for water, refrigerant R134a and propane. The model was found to agree well for these fluids over a wide range of pressures. The model shows the importance of the contributions of the different mechanisms for different fluids, wall superheats and pressures.  相似文献   

17.
Flow boiling through microchannels is characterized by nucleation and growth of vapor bubbles that fill the entire channel cross-sectional area. As the bubbles nucleate and grow inside the microchannel, a thin film of liquid or a microlayer gets trapped between the bubbles and the channel walls. The heat transfer mechanism present at the channel walls during flow boiling is studied numerically. It is then compared to the heat transfer mechanisms present during nucleate pool boiling and in a moving evaporating meniscus. Increasing contact angle improved wall heat transfer in case of nucleate boiling and moving evaporating meniscus but not in the case of flow boiling inside a microchannel. It is shown that the thermal and the flow fields present inside the microchannel around a bubble are fundamentally different as compared to nucleate pool boiling or in a moving evaporating meniscus. It is explained why thin-film evaporation is the dominant heat transfer mechanism and is responsible for creating an apparent nucleate boiling effect inside a microchannel.  相似文献   

18.
An experimental study was conducted to investigate transient local heat transfer around a bubble at onset of boiling on a thin glass heating plate immersed in saturated n-hexane at low pressure. Eight rapid response Cu-Ni thermocouples consisting of a vacuum deposited thin film were used to measure the temperature change of the heating surface. Simultaneous high-speed video photographs were also obtained. The surface temperatures near a nucleation site decreased rapidly owing to the evaporation of a thin layer (microlayer) of liquid formed beneath the bubble in the early period and the rate of bubble growth increased with increasing incipient boiling superheat (ΔTIB). The thickness of the microlayer decreased markedly with increasing ΔTIB. © 1998 Scripta Technica, Heat Trans Jpn Res, 26(7): 484–492, 1997  相似文献   

19.
The thickness of a liquid microlayer underneath a vapor bubble on a heated, cylindrical probe was determined by simultaneously solving the fourth‐order differential equation for the microlayer thickness that incorporates the momentum and energy equations in the microlayer in conjunction with the pressure distribution in the microlayer and the evaporative heat flux at the interface. The analysis also considers the temperature gradient along the probe due to heat transfer in the probe. The results show that the microlayer on a cylindrical surface is very thin and short except for very low probe surface temperatures, superheated less than 1 K. The microlayer size and the evaporative heat flux both decrease rapidly as the surface temperature increases. The results show that most of the evaporation occurs along the curved portion of the interface. © 2000 Scripta Technica, Heat Trans Asian Res, 29(3): 193–203, 2000  相似文献   

20.
The bubble growth and boiling heat transfer on a microfinned surface are studied numerically by solving the conservation equations of mass, momentum and energy. The bubble shape is tracked by a sharp-interface level-set method, which is modified to include the effect of phase change and to treat the contact angle and microlayer heat flux on an immersed solid surface. The present computation demonstrates that the microfinned surface enhances boiling heat transfer significantly compared to a plain surface. The effects of fin spacing and height on the bubble growth and heat transfer are investigated to find the optimal conditions for boiling enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号