首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
The performance of Pt–Sn-based catalyst, supported on ZSM-5 of different Si/Al ratios were investigated for simultaneous dehydrogenation and cracking of n-butane to produce light olefins. The catalysts were characterized by number of physio-chemical techniques including XRF, TEM, IR spectra, NH3-TPD and O2-pulse analysis. Increase in Si/Al ratio of zeolite support ZSM-5 significantly increased light olefin's selectivity, while feed conversion decreases due to lower acidity of support. The results indicated that both the n-butane cracking and dehydrogenation activity to light olefin's over Pt–Sn/ZSM-5 samples with increasing Si/Al ratios greatly enhanced catalytic performance. The catalysts were deactivated with time-on-stream due to the formation of carbon-containing deposits. A coke deposition was significantly related to catalyst activity, while at higher Si/Al ratio catalyst the coke precursors were depressed. These results suggested that the Pt–Sn/ZSM-5 catalyst of Si/Al ratio 300 is superior in achieving high total olefins selectivity (above 90 wt.%). The Pt–Sn/ZSM-5 also demonstrates resistance towards hydrothermal treatment, as analyzed through the three successive reaction-regeneration cycles.  相似文献   

2.
Yun-Jo Lee  Jong Wook Bae  Ki-Won Jun 《Fuel》2009,88(10):1915-1921
The change in properties of ZSM-5 samples was achieved by treatment with phosphorus compounds (trimethyl phosphite or phosphoric acid) and the resultant materials were characterized by N2 adsorption, NH3-TPD, 27Al, and 31P MAS NMR techniques. The phosphorus-treated HZSM-5 (P/ZSM-5) samples exhibited lower acidity, higher hydrothermal stability and improved dimethyl ether (DME) selectivity in methanol conversion when compared to the phosphorus-free HZSM-5. 27Al, and 31P MAS NMR results revealed that the added P indeed interacted with the ZSM-5 framework and is responsible for the changes observed in the catalytic properties. The interaction caused the decrease in strong acid sites on one hand and creation of new acid sites (NH3-TPD) on the other, in P/ZSM-5 samples. The studies indicated the need of optimizing the P loading, where the positive role of P on the catalytic activity was observed to be maximum at P/Al molar ratio of 1.05.  相似文献   

3.
Hydroisomerization of n-hexadecane is performed over ZSM-12 framework having tailored Brønsted acidity to investigate the effect in terms of product selectivity and yield. For this purpose, pure phase of ZSM-12 (bulk molar ratio Si/Al ~ 60) has been synthesized using TEABr as a structure directing agent. The framework Brønsted acidity is tailored with group II elements (M) viz. Ca, Ba and Mg, by means of ion-exchange method. The samples so prepared have been characterized for phase purity, textural parameters, morphology by employing powder X-ray diffraction, nitrogen adsorption–desorption isotherm measurement at 77 K, and scanning electron microscopy technique, respectively. Similarly, % metal exchange is estimated using inductively coupled plasma technique. The quantification of Brønsted acidity for H+–M++–ZSM-12 samples has been estimated by means of ammonia temperature programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy of ammonia (NH3-FTIR). The well characterized H+–M++–ZSM-12 samples were loaded with Platinum (Pt, 0.5 wt%) and subjected to hydroisomerization of n-hexadecane using an up-flow fixed bed reactor to verify the effect of process parameters like temperature and WHSV. Pt/H+–Ba2+–ZSM-12 with tailored Brønsted acidity in the range of about 25 % demonstrated the optimum performance among all the catalysts with an increased isomer selectivity and yield (89.2 and 80.3 %, respectively) by about 4 wt% at a conversion level of about 90 % compared to Pt/H+–ZSM-12 framework at 568 K. Such enhancement in isomer selectivity and yield is found to be significant from commercial application point of view. Based on the obtained trend, the potential benefits of implementation of Pt/H+–Ba2+–ZSM-12 (bulk molar ratio Si/Al ~ 60) framework for cold flow property improvement of ‘bio-ATF’ have been envisaged.  相似文献   

4.
Nano-ZSM-5/SBA-15 analog composites (ZSC) were prepared in a two-step process from ZSM-5 precursors with different Si/Al molar ratios (10–50) via high-temperature synthesis in mildly acidic media (200 °C, pH 3.5) aiming to evaluate the influence of the initial Si/Al ratio on their structural, acidic and catalytic properties. The resulting materials were characterized by SAXS, XRD, FTIR, TEM, N2 sorption, 27Al solid state-NMR, NH3-TPD, FTIR spectroscopy of adsorbed pyridine, AAS and ICP-AES. Under the applied synthesis conditions, a ZSC material with controlled distribution of nano-ZSM-5 and SBA-15 analog phases can be prepared from ZSM-5 precursors by adjusting the initial Si/Al ratio in the range of 20–30. Increasing the initial Si/Al ratio to 50, only ZSM-5 nanocrystals were obtained whereas reducing the initial Si/Al ratio to 10 led to the formation of a disordered mesoporous SBA-15 analog. The total acidity increases with the crystallinity of the ZSM-5 phase as varying the Si/Al ratio from 10 to 30 despite the decreased amount of incorporated aluminum. However, the acidity declines slightly when raising the Si/Al ratio to 50 because of the low incorporated aluminum. The catalytic performance of the ZSC materials compared to the reference materials, i.e. purely mesoporous Al-SBA-15 and purely microporous H-ZSM-5 was assessed in the gas phase cracking of cumene and 1,3,5-tri-isopropylbenzene (TIPB) as test reactions. The results show that a balanced ratio of nano-ZSM-5 and SBA-15 analog phases obtained by tuning the initial Si/Al ratio is crucial to achieve superior catalytic performance of the ZSC materials in the cracking of both cumene and TIPB.  相似文献   

5.
The crystallization of pure ZSM-12 phase was accomplished at Si/Al ratios ranging from 45 to 120 using tetraethylammonium bromide as the structure directing agent. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy, temperature programmed desorption of ammonia, and nitrogen adsorption–desorption measurements at 77 K, respectively. The well characterized samples were used to prepare Pt (0.5 wt%)/ZSM-12 hydroisomerization catalysts which were employed to perform n-hexadecane isomerization reaction. The catalysts were compared in terms of their activity, selectivity and product distribution at different conversion levels obtained through variation in temperature and residence times. Thus, obtained trend for product distribution over Pt/ZSM-12 system has been discussed in terms of framework Si/Al ratio to understand its role in determining the product selectivity. ZSM-12 with Si/Al ratio of 120 depicted the highest overall selectivity and favored mono-branching while those having Si/Al ratio of 45, 60 and 90 were found to favor mutlti-branching.  相似文献   

6.
A ZSM-5-based catalyst was prepared by spray-dry method for fluidized-bed naphtha catalytic cracking. Multi-techniques, such as X-ray diffraction, scanning electron microscope, 27Al MAS NMR, and NH3–TPD, were employed for the investigation of ZSM-5 framework stability, framework dealumination, and catalyst acidity variation in hydrothermal treatment. Catalytic performances of fluidized-bed naphtha catalytic cracking at 630–680 °C indicated that light olefins and other value-added products could be more efficiently produced compared with the commercial process of thermal steam cracking. Long-term catalytic evaluation implied that naphtha catalytic cracking over the catalyst prepared with spray-dry method and hydrothermal treatment can be carried out at a variable reaction condition with a relatively high and stable light olefins yield.  相似文献   

7.
The effect of the basic (NaOH) and/or acid (citric acid and EDTA-2Na) treatment of ZSM-5 zeolite has been studied comparing the structural and acidic features and their catalytic performance in n-heptane cracking. The properties of the catalysts have been elucidated using XRD, N2 low-temperature sorption, 27Al and 29Si NMR, pyridine adsorbed FTIR, NH3–TPD, SEM and TEM analysis. The results showed that the degree of desilication and dealumination of ZSM-5 zeolites was greatly dependent on the agents. NaOH obviously created new mesopores on parent ZSM-5 zeolites by desilication. Citric acid contributed to the removal of nonframework Al species, causing the increase of micropore surface area. EDTA-2Na promoted desilication and simultaneously converted part of removed framework Al species into nonframework Al species. The treatment of ZSM-5 combined with those three agents was very effective to obtain a hierarchical structure with partial breakdown of the crystallites and high acid amounts of both Brönsted and Lewis acid sites. Catalytic tests showed that the post-treated ZSM-5 catalysts had higher activity and stability than parent ZSM-5 catalyst at the same reaction temperature. The synergetic effect of Brönsted acid and Lewis acid of ZSM-5 catalyst (Z5-ACE) probably facilitated n-heptane conversion, while more clean micropore and newly created mesopores facilitated the slight increase of olefin selectivity and suppressing the formation of coke deposition in its inherent micropores to some extent.  相似文献   

8.
HZSM-5, with good surface acidity and shape selectivity, was reported as hydrocarbon cracking catalyst for multiple decades, however the hydrothermal stability, especially dealumination of tetrahedrally coordinated framework aluminum (TFAl), has been proved extensively as one of the major challenges during reaction-regeneration process. Phosphorus was proposed to stabilize TFAl and indeed it enhanced the hydrothermal stability. Unfortunately, most of the phosphorus species would remain outside of the zeolite pore, mainly as polyphosphate species, and block the micropore severely, with only a limited portion introduced into the channel being able to interact with TFAl. Enlarging the pore size by alkali treatment (desilication) is one of the most convinced methods, but the details about specific P species during alkali treatment and its transformation upon hydrothermal activation is not acquired, thus the mechanism has not been fully understood. Herein, the P-containing species and its transformation during direct P modification and acid/alkali treatment followed by P modification have been studied, and the mechanism on the interaction between P and Al species has been investigated, using several analytical methods, especially Solid-state nuclear magnetic resonance (SSNMR) spectroscopy. It was found that the combination of desilication and subsequent phosphorus modification can enhance the activity of the ZSM-5 for the cracking of ethylcyclohexane, due to the better hydrothermal stabilization of acid sites by the enhanced interaction between phosphorus and TFAl, resulting from the improved accessibility of TFAl because of the successful generation of mesoporosity. Whereas the acid treatment followed by phosphorus modification, with declined retention of crystallinity and P/Al ratio, monoclinic/orthorhombic transition during steam activation, and the failed generation of mesopores, would cause obvious aggregation of the phosphorus species and could not improve the hydrothermal stability of the ZSM-5effectively, and the direct phosphatation turned out much worse. Finally, a specific index that the intensity of the signal at 39 in 27Al MAS NMR spectra before steam activation was proposed as the indicator for determining the efficiency of phosphorus modification. And the proposed mechanism on the interaction between phosphorus and TFAl during the phosphorus modification could also be applicable in other zeolites.  相似文献   

9.
X. Chen  L. Huang  G. Ding  Q. Li 《Catalysis Letters》1997,44(1-2):123-128
Mesoporous Al-MCM-41 materials of different Si/Al ratios have been synthesized and characterized by X-ray powder diffraction, 27Al and 29Si MAS NMR, differential thermogravimetric analysis, N2 adsorption measurements, FT-IR and catalytic cracking of alkanes. The experimental results show that the incorporation of aluminium into the framework of MCM-41 has a great effect on the degree of long-distance order, the surface acidities and the mesoporous structures of the materials. With increase of the aluminium content, the amounts of tetrahedral framework aluminium and the acid sites on the samples increase, but the acid strength decreases. Al-MCM-41 materials exhibit high activity for n-C16 0 cracking and good selectivity for producing low carbon alkylenes, particularly for i-C4 =.  相似文献   

10.
Al-rich ZSM-12 zeolites were synthesized using N,N,N′,N′-tetraethylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidinium diiodide as template under hydrothermal conditions. Their physico-chemical properties were characterized using XRD, ICP-AES, SEM, N2 adsorption, 27Al MAS NMR and NH3-TPD. The results indicated that Al-rich ZSM-12 zeolites with low Si/Al ratios of 8–23 were successfully crystallized. Catalytic properties of the prepared zeolites were studied in the tert-butylation of phenol. Higher para selectivity was obtained on the Al-rich ZSM-12 zeolites compared with other types of zeolites.  相似文献   

11.
A decrease in the crystallite size increases the activity as well as the selectivity and reduces the deactivation of ZSM-5 zeolites in the dewaxing of petroleum fractions. Isomorphous replacement of Al3+ by Fe3+ reduces the dewaxing activity but enhances the yield of dewaxed oil and gasoline at the expense of C1-C4 gases. Within limits, the Si/Al ratio does not affect the performance of ZSM-5 zeolite in the hydrodewaxing process.  相似文献   

12.
Photoinduced non-oxidative coupling of methane proceeded over H-form mordenite and ZSM-5. The major product was C2H6, and the stoichiometric formation of H2 was also revealed. The effects of the pretreatment temperature, Al content and H+ exchange level upon the activity suggested that the active sites were highly isolated framework Al–O units interacting with no metal cations.  相似文献   

13.
Ti-containing ZSM-5 (Al-TS-1) has been synthesized by wetness impregnation of amorphous Al2O3-TiO2-SiO2 solids with TPAOH solutions and subsequent crystallization under autogenous pressure at 170°C. The cogel containing aluminum, titanium and silicon oxides used as raw material has been prepared following a two-step (acid-base) sol-gel process which leads to the formation of Si-O-Ti and Si-O-Al bonds previously to the zeolite crystallization. X-ray diffraction (XRD) confirms the high crystallinity of TS-1 and Al-TS-1 obtained by this procedure whereas thermogravimetric analysis (TGA) of TPAOH-containing samples andnC6 adsorption measurements show the purity of the different samples. Fourier transformed infrared spectroscopy (FTIR) evidences the incorporation of Ti and NH3 temperature programmed desorption confirms the acidic properties of Al-TS-1. Diffuse reflectance ultraviolet-visible spectroscopy (DR UV-VIS) shows that Ti atoms occupy tetrahedral positions in the Al-TS-1 and TS-1 lat-tices whereas bulk anastase and/or extraframework Ti species are not detected.29Si and27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy indicate the presence of Al occupying tetrahedral positions in the Al-TS-1 framework. Therefore, the simultaneous incorporation of Ti and Al provides the Al-TS-1 samples with bifunctional properties showing high catalytic activity forn-hexane oxyfunctionalization with H2O2 and for alcohols etherification reactions. When it is compared to the conventional procedures of Al-TS-1 preparation by hydrothermal crystallization of a liquid gel, the method studied here is simpler, requires a lower reaction volume and proceeds with shorter synthesis time. In addition Al-TS-1 prepared through this alternative method exhibits better catalytic properties than the material synthesized following a recipe based on hydrothermal crystallization of a liquid gel.  相似文献   

14.
27Al and29Si MAS NMR studies of various ZSM-5 zeolites of different Si/Al ratio, crystal size synthesized with and without alkali metal salt addition by the hydrothermal technique were carried out. The NMR observations clearly showed that the technique can be employed to differentiate Si/Al ratio, framework tetrahedral content and the crystal size. The last observation has been confirmed by SEM and catalytic activity test for para ethylation of ethylbenzene. A good correlation was found between the catalytic activity and the data from NMR and SEM.  相似文献   

15.
Hierarchical ZSM-5 catalysts with different Si/Al ratios (20, 60 and 100) were hydrothermally synthesized. The prepared samples were studied by several techniques, including X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Fourier transform infrared (FTIR) spectroscopy, N2 adsorption–desorption, high resolution transmission electron microscopy (HR-TEM), high resolution scanning electron microscopy (HR-SEM), and differential scanning calorimetry (DSC) technique. The average crystallite size and crystallinity decreases with increasing Si/Al ratio, which is confirmed by XRD. FTIR analysis further confirms the formation of ZSM-5 by the presence of characteristic bending, stretching and framework vibration. The HR-TEM images showed that all the samples having disc-like nanostructures are assembled by many primary nanocrystals. The as-synthesized ZSM-5 zeolites are thermally stable, which is confirmed by DSC. The catalytic activity of ZSM-5 zeolites was evaluated in the selective oxidation of styrene using tertiary-butyl hydroperoxide (TBHP) as the oxidant. Among the catalysts, ZSM-5(60) catalyst showed significantly higher yield of benzaldehyde at optimum conditions. The catalyst was recovered and recycled three times without a significant loss in activity and selectivity.  相似文献   

16.
Al-SBA-15 of varying Si/Al ratios in the range 11.4–78.4 was synthesized using tri-block copolymer P123. The calcined materials were examined by XRD, pore size distribution, surface area, 27Al NMR spectroscopy. The acidity and acid strength distribution were studied using microcalorimetric adsorption of NH3. The acidic properties were also examined by cumene cracking reaction as a function of Si/Al ratios. Systematic variation of acidity and activity was observed as a function of Si/Al ratio. The initial heats of NH3 adsorption correlated well with activity indicate that acid sites with ΔH > 100 kJ/mole is responsible for cumene cracking activity. Linear correlations were obtained with total acidity and cumene cracking activities. The tetrahedral aluminum was found to be responsible for the observed acidities and catalytic activities.  相似文献   

17.
Titanium silicalite (TS-1) was successfully synthesized by using TPABr as the template and silica sol as silicon source in a 100 l stainless steel autoclave. IR, XRD, UV--vis, elemental analysis, and 27Al and 31P MAS NMR were used to characterize the synthesized products. The results show that the synthesized material has an MFI structure with high crystallinity and large crystal size and two kinds of titanium species. Trace aluminum in silica sol is also incorporated into the zeolite framework. The synthesized TS-1 exhibits high activity in the epoxidation of propylene with dilute H2O2 with high selectivity to methyl mono-ethers and low selectivity to propylene oxide (PO). The low selectivity toward PO is due to the residual acidity onto TS-1. The selectivity of PO can reach up to 90% through adjusting the pH of the reaction mixture. Extra amounts of base decrease the H2O2 utilization and the H2O2 conversion. However, in over acid-treated TS-1 in which part removal of extra-framework titanium takes place, the utilization of H2O2 is quite different: for the low Si/Ti ratio of TS-1, the H2O2 utilization increases. But the utilization of H2O2 does not change for the high Si/Ti ratio TS-1. Thermal analysis shows that the as-synthesized TS-1 exhibits high activity and thermal stability in the calcined range 540-900 °C.  相似文献   

18.
The catalytic properties of nanocrystalline HZSM-5 catalysts with high Si/Al molar ratio (ca. 65) were investigated in the gas phase dehydration of aqueous glycerol. Compared with bulk HZSM-5, the small-sized catalyst exhibits greatly enhanced catalytic performance in glycerol dehydration even with very high GHSV (=1438 h?1). Catalysts with different Si/Al ratios were studied, but it is difficult to separate the influence of Si/Al ratio from that of particle size. However, by varying the proton exchange degree for one mother batch of zeolite, a series of HxNa1–xZSM-5 catalysts with same particle size and different Brønsted acid site densities was prepared. The catalytic results for this series of samples show that high density of Brønsted acid sites favors the production of acrolein. Based on these results, small-sized HZSM-5 with high aluminum content appears to be most promising for gas phase dehydration of glycerol.  相似文献   

19.
Various metallosilicates were synthesized using a hydrothermal method and characterized by SEM, XRD,29Si MAS NMR, chemical analysis and surface area measurements. These results showed that they had a MFI structure. The pentane aromatization reaction was carried out over these metallosilicates in a continuous flow reactor at 550 °C, He/pentane=3, WHSV=1.5 h−1 and 1 atm. Among the various metallosilicates, [Ga]ZSM-5(20) (52.3%) and [Zn]ZSM-5(40) (37.6%) showed higher aromatic selectivities for pentane aromatization. When [Al] ZSM-5(40) was ion-exchanged with gallium nitrate and zinc chloride, the selectivities for aromatics increased from 23.0% to 35.5% and to 32.7%, respectively. The Si/metal mole ratios of [Ga]ZSM-5 and [Al]ZSM-5 were changed from 20 to 250 and NH3 temperature programmed desorption (TPD) was carried out. As the Si/metal ratio was changed from 250 to 20, the selectivities for aromatics were increased from 5.3 % to 52.3 % over [Ga]ZSM-5 and from 10.1% to 25.7% over [Al]ZSM-5. NH3 TPD of [Ga]ZSM-5 indicated that the sites of medium acidity play an important role in the formation of aromatics. When H2 and CO were added to the reactant of pentane, the production of methane and ethane increased and that of aromatics decreased.  相似文献   

20.
Dealuminated zeolites Y were treated with aqueous solutions of various acids and ammonium salts to investigate the realumination behavior under acidic conditions. From the results of 27Al MAS NMR, 29Si MAS NMR and FT-IR measurements, it was found that a part of non-framework aluminum species in the dealuminated zeolite Y is effectively reinserted into the zeolite framework in CH3COONH4 and C6H5COONH4 aqueous solutions. Pyridine adsorption experiments also revealed that most of incorporated aluminum species generate tetrahedrally coordinated framework aluminum species, namely Brönsted acid sites. Although the realumination also proceeded in H2SO4 and CH3COOH aqueous solutions, large amounts of incorporated aluminum species were not necessarily responsible for generation of Brönsted acid sites. Framework connected aluminum species, presumably as 3-fold-coordinated Lewis acidic framework aluminum species, were mainly generated. In the TEM image of the realuminated zeolite Y, needle-like crystals with ca. 25–80 nm in length were observed, which are probably due to AlOOH generated from non-framework aluminum species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号