首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural convection flows in a square cavity filled with a porous matrix has been studied numerically using penalty finite element method for uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls. Darcy–Forchheimer model is used to simulate the momentum transfer in the porous medium. The numerical procedure is adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 103  Ra  106, Darcy number Da, 10−5  Da  10−3, and Prandtl number Pr, 0.71  Pr  10) with respect to continuous and discontinuous thermal boundary conditions. Numerical results are presented in terms of stream functions, temperature profiles and Nusselt numbers. Non-uniform heating of the bottom wall produces greater heat transfer rate at the center of the bottom wall than uniform heating case for all Rayleigh numbers but average Nusselt number shows overall lower heat transfer rate for non-uniform heating case. It has been found that the heat transfer is primarily due to conduction for Da  10−5 irrespective of Ra and Pr. The conductive heat transfer regime as a function of Ra has also been reported for Da  10−4. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes the power law correlations between average Nusselt number and Rayleigh numbers are presented.  相似文献   

2.
The present numerical study deals with natural convection flow in a closed square cavity when the bottom wall is uniformly heated and vertical wall(s) are linearly heated whereas the top wall is well insulated. Non-linear coupled PDEs governing the flow have been solved by penalty finite element method with bi-quadratic rectangular elements. Numerical results are obtained for various values of Rayleigh number (Ra) (103  Ra  105) and Prandtl number (Pr) (0.7  Pr  10). Results are presented in the form of streamlines, isotherm contours, local Nusselt number and the average Nusselt as a function of Rayleigh number.  相似文献   

3.
In this paper natural convection flows in a square cavity filled with a porous matrix has been investigated numerically when the bottom wall is uniformly heated and vertical wall(s) are linearly heated whereas the top wall is well insulated. Darcy–Forchheimer model without the inertia term is used to simulate the momentum transfer in the porous medium. Penalty finite element method with bi-quadratic rectangular elements is used to solve the non-dimensional governing equations. Numerical results are presented for a range of parameters (Rayleigh number Ra, 103  Ra  106, Darcy number Da, 10−5  Da  10−3, and Prandtl number Pr, 0.2  Pr  100) in terms of stream functions and isotherm contours, and local and average Nusselt numbers.  相似文献   

4.
Analysis has been carried out for the energy distribution and thermal mixing in steady laminar natural convective flow through the rhombic enclosures with various inclination angles, φ for various industrial applications. Simulations are carried out for various regimes of Prandtl (Pr) and Rayleigh (Ra) numbers. Dimensionless streamfunctions and heatfunctions are used to visualize the flow and energy distribution, respectively. Multiple flow circulations are observed at Pr = 0.015 and 0.7 for all φs at Ra = 105. On the other hand, two asymmetric flow circulation cells are found to occupy the entire cavity for φ = 75° at higher Pr (Pr = 7.2 and 1000) and Ra (Ra = 105). Heatlines are found to be parallel circular arcs connecting the cold and hot walls for the conduction dominant heat transfer at Ra = 103. The enhanced convective heat transfer is explained with dense heatlines and convective loop of heatlines at Ra = 105. Heatlines clearly demonstrate that the left wall receives heat from the bottom wall as heatlines directly connect both the walls whereas the convective heat circulation cells play lead role to distribute the heat along the right wall, especially for smaller φs. On the other hand, the heat flow is evenly distributed to both side walls at higher φs via convection as well as direct conductive transport. Significant convective heat transfer from the bottom hot wall to the left cold wall occurs for φ = 30° cavity whereas the heat transfer to the right cold wall is maximum for φ = 75° irrespective of Pr. Average Nusselt number studies also show that φ = 30° cavity gives maximum heat transfer rate from the bottom to left wall irrespective of Pr in isothermal heating case. On the other hand, enhanced thermal mixing occurs at φ = 75° for both isothermal and non-isothermal heating strategies except at Pr = 0.015 in isothermal heating case.  相似文献   

5.
The present paper investigates the numerical simulation of steady laminar incompressible natural convection heat transfer in an enclosed cavity that is filled with a fluid-saturated porous medium. The bottom wall is subjected to a relatively higher temperature than the top wall while the vertical walls are considered to be insulated. The flow field is modeled upon incorporating different non-Darcian effects, such as the convective term, Brinkman effect and Forchhiemer quadratic inertial effect. Moreover the two-equation model is used to separately account for the local fluid and solid temperatures. The numerical solution is obtained through the application of the finite volume method. The appraisals of the sought objectives are performed upon identifying key dimensionless groups of parameters. These dimensionless groups along with their operating domains are: Rayleigh number 1  Ra  400, Darcy number 10−4  Da  10−3, effective fluid-to-solid thermal conductivity ratio 0.1  κ  1.0, and the modified Biot number 1  χ  100. The non-Darcian effects are first examined over a broad range of Rayleigh number. Next, the implications of the group of parameters on the flow circulation intensity, local thermal non-equilibrium (LTNE) and average Nusselt number are highlighted and pertinent observations are documented.  相似文献   

6.
Based on asymptotic considerations a heat transfer law for turbulent Rayleigh–Bénard convection is found that differs from existing correlations which often are of a power law type with respect to their Rayleigh number dependence. From the asymptotic temperature profile, derived by matching temperature gradients in the overlap region of the wall layer and the core layer, a Nusselt number follows which includes a logarithmic term. This correlation is in good agreement with data from highly accurate Rayleigh–Bénard experiments for Rayleigh numbers between 105 and 1015 and Prandtl numbers larger than 0.5. It is an alternative to existing power laws or more complicated correlations for Nu = Nu(Ra,Pr).  相似文献   

7.
Finite element method is used in this study to analyze the effects of buoyancy ratio and Lewis number on heat and mass transfer in a triangular cavity with zig-zag shaped bottom wall. Buoyancy ratio is defined as the ratio of Grashof number of solutal and thermal. Inclined walls of the cavity have lower temperature and concentration according to zig-zag shaped bottom wall. Enclosed space consists mostly of an absorber plate and two inclined glass covers that form a cavity. Both high temperature and high concentrations are applied to bottom corrugated wall. Computations were done for different values of buoyancy ratio (?10 ? Br ? 10), Lewis number (0.1 ? Le ? 20) and thermal Rayleigh number (104 ? RaT ? 106). Streamlines, isotherms, iso-concentration, average Nusselt and Sherwood numbers are obtained. It is found that average Nusselt and Sherwood numbers increase by 89.18% and 101.91% respectively as Br increases from ?10 to 20 at RaT = 106. Also, average Nusselt decreases by 16.22% and Sherwood numbers increases by 144.84% as Le increases from 0.1 to 20 at this Rayleigh number.  相似文献   

8.
Steady natural convection at low Prandtl numbers caused by large density differences in a square cavity heated through the side walls is investigated numerically and theoretically. An appropriate dimensionless parameter characterizing the density differences of the working fluid is identified by the Gay-Lussac number. The Boussinesq assumption is achieved when the Gay-Lussac number tends to zero. The Nusselt number is derived for the ranges in Rayleigh number 10 ? Ra ? 108, in Prandtl number 0.0071 ? Pr ? 7.1 and in Gay-Lussac number 0 ? Ga < 2. The effects of the Rayleigh, Prandtl and Gay-Lussac numbers on the Nusselt number are discussed on physical grounds by means of a scale analysis. Finally, based on physical arguments, a heat transfer correlation is proposed, valid for all Prandtl and Gay-Lussac number ranges addressed.  相似文献   

9.
To simulate turbulent convection at high Rayleigh number (Ra), we propose a new thermal lattice-BGK (LBGK) model based on large eddy simulation (LES). Two-dimensional numerical simulations of natural convection with internal heat generation in a square cavity were performed at Ra from 106 to 1013 with Prandtl numbers (Pr) at 0.25 and 0.60. Simulation results indicate that our model is fit to simulate high Ra flow for its better numerical stability. At Ra = 1013, a global turbulent has occurred. With a further increase in Ra, the flow will arrive in a fully turbulence regime. The Nusselt–Rayleigh relationship is also discussed.  相似文献   

10.
In this paper, natural convection around a tilted heated square cylinder kept in an enclosure has been studied in the range of 103  Ra  106. Streamfunction-vorticity formulation of the Navier–Stokes equation is solved numerically using finite-difference method in non-orthogonal body-fitted coordinate system. Detailed flow and heat transfer features for two different thermal boundary conditions are reported. Effects of the enclosure geometry has been assessed using three different aspect ratio placing the square cylinder at different heights from the bottom. The concept of heatfunction has been employed to trace the path of heat transport. It is found that the uniform wall temperature heating is quantitatively different from the uniform wall heat flux heating. Flow pattern and thermal stratification are modified, if aspect ratio is varied. Overall heat transfer also changes for different aspect ratio.  相似文献   

11.
This work concerns with the study of natural convection heat transfer in rectangular cavities with an inside oval-shaped heat source filled with Fe3O4/water nanofluid. The finite element method is employed to solve the governing equations for this problem. Average Nusselt numbers are presented for a wide range of Rayleigh number (103  Ra  105), volume fraction of nanoparticles (0  ϕ  14%), and four different size and shapes of the heat source. Depending on concentration of the nanoparticle, geometry of the heat source, and the value of Rayleigh number different behaviors are monitored for average Nusselt numbers. Configuration of the heat source dictates a significant change on the behavior of the average Nusselt number, while addition of the nanoparticles has a negative effect on the magnitude of Nusselt number for this problem.  相似文献   

12.
In this study numerical predictions of local and global entropy generation rates in natural convection in air in a vertical channel symmetrically heated at uniform heat flux are reported. Results of entropy generation analysis are obtained by solving the entropy generation equation based on the velocity and temperature data. The analyzed regime is two-dimensional, laminar and steady state. The numerical procedure expands an existing computer code on natural convection in vertical channels. Results in terms of fields and profiles of local entropy generation, for various Rayleigh number, Ra, and aspect ratio values, L/b, are given. The distributions of local values show different behaviours for the different Ra values. A correlation between global entropy generation rates, Rayleigh number and aspect ratio is proposed in the ranges 103  Ra  106 and 5  L/b  20.  相似文献   

13.
Forced convection heat transfer to incompressible power-law fluids from a heated circular cylinder in the steady cross-flow regime has been investigated numerically by solving the momentum and thermal energy equations using a finite volume method and the QUICK scheme on a non-uniform Cartesian grid. The dependence of the average Nusselt number on the Reynolds number (5  Re  40), power-law index (0.6  n  2) and Prandtl number (1  Pr  1000) has been studied in detail. The numerical results are used to develop simple correlations as functions of the pertinent dimensionless variables. In addition to the average Nusselt number, the effects of Re, Pr and n on the local Nusselt number distribution have also been studied to provide further physical insights. The role of the two types of thermal boundary conditions, namely, constant temperature and uniform heat flux on the surface of the cylinder has also been presented.  相似文献   

14.
Experimental measurements and numerical simulations of natural convection in a cubical cavity heated from below and cooled from above are reported at turbulent Rayleigh numbers using water as a convective fluid (Pr = 6.0). Direct numerical simulations were carried out considering the Boussinesq approximation with a second-order finite volume code (107  Ra  108). The particle image velocimetry technique was used to measure the velocity field at Ra = 107, Ra = 7 × 107 and Ra = 108 and there was general agreement between the predicted time averaged local velocities and those experimentally measured if the heat conduction through the sidewalls was considered in the simulations.  相似文献   

15.
Natural convection heat transfer from a heated thin plate located in the middle of a lid-driven inclined square enclosure has been analyzed numerically. Left and right of the cavity are adiabatic, the two horizontal walls have constant temperature lower than the plate’s temperature. The study is formulated in terms of the vorticity-stream function procedure and numerical solution was performed using a fully higher-order compact (FHOC) finite difference scheme on the 9-point 2D stencil. Air was chosen as a working fluid (Pr = 0.71). Two cases are considered depending on the position of heated thin plate (Case I, horizontal position; Case II, vertical position). Governing parameters, which are effective on flow field and temperature distribution, are Rayleigh number values (Ra) ranging from 103 to 105 and inclination angles γ (0° ? γ < 360°). The fluid flow, heat transfer and heat transport characteristics were illustrated by streamlines, isotherms and Nusselt number (Nu). It is found that fluid flow and temperature fields strongly depend on Rayleigh numbers and inclination angles. Further, for the vertical located position of thin plate heat transfer becomes more enhanced with lower γ at various Rayleigh numbers.  相似文献   

16.
Numerical methods are used to solve the finite volume formulation of the two-dimensional mass, momentum and energy equations for steady-state natural convection inside a square enclosure. The enclosure consists of adiabatic horizontal walls and differentially heated vertical walls, but it also contains an adiabatic centrally-placed solid block. The aim of the study is to delineate the effect of such a block on the flow and temperature fields. The parametric study covers the range 103  Ra  106 and is done at three Pr namely, 0.071, 0.71 and 7.1. In addition the effect of increasing the size (characterized by the solidity Φ) of the adiabatic block is ascertained. It is found that the wall heat transfer increases, with increase in the Φ, until it reaches a critical value Φ = ΦOPT, where the wall heat transfer attains its maximum. Further increases in the block size beyond ΦOPT, reduces the wall heat transfer, for as the block size becomes larger than the conduction dominant core size it reduces the thermal mass of the convecting fluid. A steady-state heat transfer enhancement of 10% is observed for certain Ra and Pr values. Useful correlations predicting this optimum block size and the corresponding maximum heat transfer as a function of Ra and Pr are proposed; these predict within ±3%, the numerical results.  相似文献   

17.
This article analyzes the detailed heat transfer phenomena during natural convection within tilted square cavities with isothermally cooled walls (BC and DA) and hot wall AB is parallel to the insulated wall CD. A penalty finite element analysis with bi-quadratic elements has been used to investigate the results in terms of streamlines, isotherms and heatlines. The present numerical procedure is performed over a wide range of parameters (103 ? Ra ? 105,0.015 ? Pr ? 1000,0° ? φ ? 90°). Secondary circulations cells are observed near corner regions of cavity for all φ’s at Pr = 0.015 with Ra = 105. Two asymmetric flow circulation cells are found to occupy the entire cavity for φ = 15° at Pr = 0.7 and Pr = 1000 with Ra = 105. Heatlines indicate that the cavity with inclination angle φ = 15° corresponds to large convective heat transfer from the wall AB to wall DA whereas the heat transfer to wall BC is maximum for φ = 75°. Heat transfer rates along the walls are obtained in terms of local and average Nusselt numbers and they are explained based on gradients of heatfunctions. Average Nusselt number distributions show that heat transfer rate along wall DA is larger for lower inclination angle (φ = 15°) whereas maximum heat transfer rate along wall BC occur for higher inclination angle (φ = 75°).  相似文献   

18.
Natural convection and flow circulation within a cavity has received significant attention in recent times. The wide range of applicability of flow inside a cavity (food processing industries, molten metal industries, etc.) requires thorough understanding for cost efficient processes. This paper is based on comprehensive analysis of heat flow pattern using Bejan’s heatline concept. The key parameters for our study are the Prandtl number, Rayleigh number and Nusselt number. The values of Prandtl number (0.015, 0.026, 0.7 and 1000) have been chosen based on wide range of applicability. The Rayleigh number has been varied from 102 to 105. Interesting results were obtained. For low Rayleigh number, it is found that the heatlines are smooth and perfectly normal to the isotherms indicating the dominance of conduction. But as Ra increases, flow slowly becomes convection dominant. It is also observed that multiple secondary circulations are formed for fluids with low Pr whereas these features are absent in higher Pr fluids. Multiple circulation cells for smaller Pr also correspond multiple cells of heatlines which illustrate less thermal transport from hot wall. On the other hand, the dense heatlines at bottom wall display enhanced heat transport for larger Pr. Further, local heat transfer (Nul, Nut) are explained based on heatlines. The comprehensive analysis is concluded with the average Nusselt number plots. A correlation for average heat transfer rate and Ra has been developed and the range of Rayleigh number is also found, to depict the conduction dominant heat transfer.  相似文献   

19.
Natural convection in trapezoidal cavities, especially those with two internal baffles in conjunction with an insulated floor, inclined top surface, and isothermal left-heated and isothermal right-cooled vertical walls, has been investigated numerically using the Element based Finite Volume Method (EbFVM). In numerical simulations, the effect of three inclination angles of the upper surface as well as the effect of the Rayleigh number (Ra), the Prandtl number (Pr), and the baffle’s height (Hb) on the stream functions, temperature profiles, and local and average Nusselt numbers has been investigated. A parametric study was performed for a wide range of Ra numbers (103 ? Ra ? 106) Hb heights (Hb = H1/3, 2H1/3, and H1), Pr numbers (Pr = 0.7, 10 and 130), and top angle (θ) ranges from 10 to 20. A correlation for the average Nusselt number in terms of Pr and Ra numbers, and the inclination of the upper surface of the cavity is proposed for each baffle height investigated.  相似文献   

20.
Two approaches to predicting the sphere cooling process by laminar natural convection were compared in terms of the accuracy of the volume averaged sphere temperature and the heat transfer rate between the sphere and the surrounding fluid. The first approach is based on the formulation of conjugate heat transfer (heat conduction in the sphere and laminar natural convection in the fluid). The second approach includes the lumped capacity method based on the assumption that the temperature in the sphere is spatially uniform and on the Churchill correlation function. The solution to the problem depends on the Rayleigh number (Ra), the Biot number (Bi), the Prandtl number (Pr), and the sphere-to-fluid thermal diffusivity ratio (A). The lumped capacitance method gives fairly accurate results with respect to the conjugate heat transfer method (discrepancy in the volume averaged sphere temperature less than 5%) when A · Bi/Ra0.452 < 0.05, for Bi < 0.15 and Pr > 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号