首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new membrane‐assisted hybrid bioreactor was developed to remove ammonia and organic matter. This system was composed of a hybrid circulating bed reactor (CBR) coupled in series to an ultrafiltration membrane module for biomass separation. The growth of biomass both in suspension and biofilms was promoted in the hybrid reactor. The system was operated for 103 days, during which a constant ammonia loading rate (ALR) was fed to the system. The COD/N‐NH4+ ratio was manipulated between 0 and 4, in order to study the effects of different organic matter concentrations on the nitrification capacity of the system. Experimental results have shown that it was feasible to operate with a membrane hybrid system attaining 99% chemical oxygen demand (COD) removal and ammonia conversion. The ALR was 0.92 kg N‐NH4+ m?3 d?1 and the organic loading rate (OLR) achieved up to 3.6 kg COD m?3 d?1. Also, the concentration of ammonia in the effluent was low, 1 mg N‐NH4+ dm?3. Specific activity determinations have shown that there was a certain degree of segregation of nitrifiers and heterotrophs between the two biomass phases in the system. Growth of the slow‐growing nitrifiers took place preferentially in the biofilm and the fast‐growing heterotrophs grew in suspension. This fact allowed the nitrifying activity in the biofilm be maintained around 0.8 g N g?1 protein d?1, regardless of the addition of organic matter in the influent. The specific nitrifying activity of suspended biomass varied between 0.3 and 0.4 g N g?1 VSS d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Aerobic treatment of refinery wastewater was carried out in a 200 dm3 gas–liquid–solid three‐phase flow airlift loop bioreactor, in which a biological membrane replaced the activated sludge. The influences of temperature, pH, gas–liquid ratio and hydraulic residence time on the reductions in chemical oxygen demand (COD) and NH4‐N were investigated and discussed. The optimum operation conditions were obtained as temperature of 25–35 °C, pH value of 7.0–8.0, gas–liquid ratio of 50 and hydraulic residence time of 4 h. The radial and axial positions had little influence on the local profiles of COD and NH4‐N. Under the optimum operating conditions, the effluent COD and NH4‐N were less than 100 mg dm?3 and 15 mg dm?3 respectively for more than 40 days, satisfying the national primary discharge standard of China (GB 8978‐1996). Copyright © 2005 Society of Chemical Industry  相似文献   

3.
BACKGROUND: This study focused on the effectiveness of the zero‐valent iron (ZVI) pre‐treatment for enhancing the biodegradability of 2‐chloronitrobenzene (2‐ClNB), and further to evaluate the performance and mechanism of a coupled ZVI column–sequencing batch reactor (SBR) system treating 2‐ClNB contained wastewater. RESULTS: 2‐ClNB was readily transformed into 2‐chloroaniline (2‐ClAn) with the efficiency over 99.9% by ZVI column, and its biodegradability was significantly enhanced via ZVI pretreatment. The transformed effluent was subsequently fed into the SBR followed by 2‐ClAn loading of 3.4–117.2 g m?3 d?1 and COD loading around 1000 g m?3 d?1. A 2‐ClAn removal efficiency over 99.9% and COD removal efficiency of 82.0–98.1% were obtained. Moreover, 91.9 ± 0.1% TOC removal efficiency and 107.1 ± 6.0% chloride recovery efficiency during one cycle confirmed the complete biodegradation of 2‐ClAn in the coupled system. 16S rDNA PCR‐DGGE analysis suggested that ZVI pretreatment enhanced the diversity of the microbial community and promoted enrichment of the functional microorganisms degrading 2‐ClAn in the following SBR. CONCLUSION: ZVI pretreatment significantly enhanced the biodegradability of 2‐ClNB, and the coupled ZVI–SBR system demonstrated excellent performance when treating wastewater containing 2‐ClNB. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Biological systems for the treatment of wastewater have to provide optimum sludge retention to achieve high removal efficiencies. In the case of slow‐growing micro‐organisms, such as anaerobic ammonia‐oxidizing (Anammox) bacteria, episodes of flotation involving biomass wash‐out are especially critical. In this study a strategy based on the introduction of a mix period in the operational cycle of the Anammox Sequencing Batch Reactor (SBR) was tested for its effects on biomass retention and nitrite removal. Using this new cycle distribution the biomass retention inside the reactor improved as the solids concentration in the effluent of the SBR decreased from 20–45 to 5–10 mg VSS dm?3 and the biomass concentration inside the reactor increased from 1.30 to 2.53 g VSS dm?3 in a period of 25 days. A decrease of the sludge volume index (SVI) from 108 to 60 cm3 g VSS?1 was also observed. Complete depletion of nitrite was achieved in the reactor only with the new cycle distribution treating nitrogen loading rates (g N‐NO2? + g N‐NH4+ dm?3 d?1) up to 0.60 g N dm?3 d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
A pilot‐scale anaerobic/aerobic ultrafiltration system was tested to treat high‐strength tomato‐processing wastewater, to achieve stringent dry‐ditch discharge criteria of soluble biochemical oxygen demand (SBOD) <10 mg dm?3, total suspended solids <10 mg dm?3, ammonia nitrogen <3 mg dm?3 and soluble phosphorus <0.5 mg dm?3. The anaerobic/aerobic system achieved 99.4% SBOD removal, 91.9% NH3 N removal and 100% phosphorus removal at an overall hydraulic retention time of 1.5 days and solids retention time of 5 days during the tomato canning season. Respirometric studies confirmed that the pretreatment of tomato‐processing wastewater in the anaerobic reactor increased the readily biodegradable fraction, improved kinetics, and eliminated nutrient deficiency problem. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
A fluidized bed bioreactor (FBBR) was operated for more than 575 days to remove 2,4,6‐trichlorophenol (TCP) and phenol (Phe) from a synthetic toxic wastewater containing 80 mg L?1 of TCP and 20 mg L?1 of Phe under two regimes: Methanogenic (M) and Partially‐Aerated Methanogenic (PAM). The mesophilic, laboratory‐scale FBBR consisted of a glass column (3 L capacity) loaded with 1 L of 1 mm diameter granular activated carbon colonized by an anaerobic consortium. Sucrose (1 g COD L?1) was used as co‐substrate in the two conditions. The hydraulic residence time was kept constant at 1 day. Both conditions showed similar TCP and Phe removal (99.9 + %); nevertheless, in the Methanogenic regime, the accumulation of 4‐chlorophenol (4CP) up to 16 mg L?1 and phenol up to 4 mg L?1 was observed, whereas in PAM conditions 4CP and other intermediates were not detected. The specific methanogenic activity of biomass decreased from 1.01 ± 0.14 in M conditions to 0.19 ± 0.06 mmolCH4 h?1 gTKN?1 in PAM conditions whereas the specific oxygen uptake rate increased from 0.039 ± 0.008 in M conditions to 0.054 ± 0.012 mmolO2 h?1 gTKN?1, which suggested the co‐existence of both methanogenic archaea and aerobic bacteria in the undefined consortium. The advantage of the PAM condition over the M regime is that it provides for the thorough removal of less‐substituted chlorophenols produced by the reductive dehalogenation of TCP rather than the removal of the parent compound itself. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
An aerobic membrane bioreactor (MBR) at complete biomass retention was studied over a period of time under starvation conditions. Kinetic parameters were determined in a no‐feed batch test. The decay rate of activated sludge, kd = 0.05 d–1, was determined by tracking the decrease of MLSS. The ratio of MLVSS/MLSS was in the range 0.76–0.85. The pH values were between 7.02 and 8.23. As a function of different initial concentrations of MLSS, specific nitrification rates qN, decreased from 4.23 to 0.02 mg‐N/(g MLVSS d) and specific biodegradation rates qb increased from 0.23 to 1.90 mg‐COD/(g MLVSS d). From experimental data the kinetic constants for respiration, which followed Monod kinetics, were determined as qO2max = 9.8 mg‐O2/(g MLVSS h), Kx = 2.9 g/dm3. Additionally, a linear correlation between MLSS and mean floc size was found to exist during the biodegradation process.  相似文献   

8.
A novel water soluble amphiphilic O‐ carboxymethyl‐N‐trimethyl Chitosan chloride (CMTMC) was synthesized. The structure of this material was characterized by Fourier transform infrared (FTIR) spectroscopy, 13C nuclear magnetic resonance (13C‐NMR) spectroscopy and X‐ray diffraction (XRD) techniques. The results showed that CMTMC had been successfully prepared. To determine the flocculation performance of the synthesized amphiphilic polymer, a comparison was made among Chitosan (CS), N‐trimethyl chitosan chloride (TMC), O‐carboxymethyl chitosan (CMC), and CMTMC on the turbidity and COD removal efficiency of 1% (v/v) wastewater in sugar refinery suspensions at pH 5.0, 7.0 and 9.0 at a dosage range of 0–8 mg/L. The results showed that the water soluble amphiphilic polymer CMTMC, which contains longer polymer anion and polymer cation, had the best performance not only in turbidity removal but also in COD removal on sugar refinery wastewater. The using of CMTMC as a flocculant to treat wastewater in sugar refinery was actually more effective than CS, CMC, and TMC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The innovative process anaerobic/aerobic/membrane bioreactor (A/O/MBR) was developed to enhance pre-denitrification without the energy consumption of the recirculation pump for reusing wastewater to boiler feed-water. The performance of this bioreactor was investigated. Firstly, the septic tank wastewater with low ratio of COD/TN was disposed by a dynamic membrane bioreactor (DMBR). It was found that, although the high concentration of NO2–N in the effluent implied the potential ability of DMBR to realize shortcut nitrification and denitrification, the effluent of single DMBR was difficult to reach the criteria of reusing to boiler feed-water. Then, the process A/O/DMBR in disposing the septic tank wastewater was studied. The results indicated that this process not only accomplished the removal of 91.5% COD, 90.3% NH4+–N and 60.2% TN, but also successfully realized pre-denitrification without additional recirculation pump. At last, based on the A/O/DMBR, a pilot plant A/O/MBR was built to dispose the municipal raw sewage. In the stable operation period, the average removal efficiencies for COD, NH4+–N, TP and turbidity reached 90%, 95%, 70% and 99%, respectively. During the tested HRT run of 9.0 h, the effluent of COD, NH4+–N, TP and turbidity was about 10 mg/L, 3 mg/L, below 1 mg/L and 1.2 NTU, respectively, which reached the criteria of the boiler feed-water in China.  相似文献   

10.
In the present study, attempts are made to optimize digestion time, initial feed pH, feed temperature, and feed flow rate (organic loading rate, OLR) for maximum yield of methane gas and maximum removal of chemical oxygen demand (COD) and biological oxygen demand (BOD) of sugar industry wastewaters in three‐phase fluidized‐bed bioreactor. Methane gas is analysed by using flame‐ionisation detector (FID). The optimum digestion time is 8 h and optimum initial pH of feed is observed as 7.5. The optimum temperature of feed is 40°C and optimum feed flow rate is 14 L/min with OLR 39.513 kg COD/m3 h. OLR is calculated on the basis of COD inlet in the bioreactor at different flow rates. The maximum methane gas concentration is 61.56% (v/v) of the total biogas generation at optimum biomethanation process parameters. The maximum biogas yield rate is 0.835 m3/kg COD/m3 h with maximum methane gas yield rate (61.56%, v/v) of 0.503 m3/kg COD/m3 h at optimum parameters. The maximum COD and BOD reduction of the sugar industry wastewaters are 76.82% (w/w) and 81.65% (w/w) at optimum biomethanation parameters, respectively.  相似文献   

11.
A study of the effect of organic volumetric loading rate (BV) on the performance of a down‐flow anaerobic fixed bed reactor (DFAFBR) treating settled piggery waste was carried out at a range of between 1.1 and 6.8 g COD dm?3 d?1. The reactor operated at good removal efficiencies and stability under the operational conditions studied. Logarithmic empirical equations described adequately the removal efficiency for different parameters studied (COD, SCOD, BOD, TS, VS, TSS, VSS and phosphorous). Although process stability was affected by the increase of BV, process failure was not observed. A logarithmic relationship was found to describe the influence of BV on the TVFA/alkalinity ratio (p). A linear correlation was found between the effluent substrate concentration and the values of p and between p and the CO2/CH4 ratio in the biogas. The effect of the hydraulic volumetric loading rate (HV) on the flow pattern of the reactor was evaluated. Dispersion number (Dn) was in the range of 0.17–0.37 for the maximum and minimum values of HV studied, respectively. The ratio between the real and theoretical HRT increased as the HV decreased. These results demonstrate that axial dispersion increased as the HV and the Reynolds number decreased. Due to the hydraulic behaviour of the reactor, the kinetic model developed by Lawrence and McCarty was used for describing the experimental results obtained. Maximum specific substrate removal rate (K), specific organic loading rate constant (KL), microbial decay coefficient (Kd), microbial yield coefficient (Y), maximum microbial growth rate (UM) and saturation constant (KS) were found to be: 3.1 (g COD g VSS?1 d?1), 3.0 (g COD g VSS?1 d?1), 0.062 (d?1), 0.15 (g VSS g COD removed?1), 0.39 (d?1) and 2.6 (g SCOD dm?3), respectively. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
A 450 dm3 pilot‐scale upflow anaerobic sludge blanket (UASB) reactor was used for the treatment of a fermentation‐based pharmaceutical wastewater. The UASB reactor performed well up to an organic loading rate (OLR) of 10.7 kg COD m?3 d?1 at which point 94% COD removal efficiency was achieved. This high treatment efficiency did not continue, however and the UASB reactor was then operated at lower OLRs for the remainder of the study. Specific methanogenic activity (SMA) tests were, therefore, carried out to determine the potential loading capacity of the UASB reactor. For this purpose, the SMA tests were carried out at four different initial acetate concentrations, namely 500 mg dm?3, 1000 mg dm?3, 1500 mg dm?3 and 2000 mg dm?3 so that substrate limitation could not occur. The results showed that the sludge sample taken from the UASB reactor (OLR of 6.1 kg COD m?3 d?1) had a potential acetoclastic methane production (PMP) rate of 72 cm3 CH4 g?1 VSS d?1. When the PMP rate was compared with the actual methane production rate (AMP) of 67 cm3 CH4 g?1 VSS d?1 obtained from the UASB reactor, the AMP/PMP ratio was found to be 0.94 which ensured that the UASB reactor was operated using its maximum potential acetoclastic methanogenic capacity. In order to achieve higher OLRs with desired COD removal efficiencies it was recommended that the UASB reactor should be loaded with suitable OLRs pre‐determined by SMA tests. © 2001 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Raw cheese whey originating from white cheese production results in a strong and complex wastewater excessively rich in organic matter (chemical oxygen demand, COD = 28–65 g L?1), fatty matter (14–24.5 g L?1) and acidity (3.9–6.1 g L?1). It was treated in a three‐stage configuration consisting of a pre‐acidification (PA) tank and sequential upflow anaerobic sludge bed reactors (UASBRs) at 2.8–7 g COD L?1 day?1 organic loading rates, during which the effects of effluent recycling at low rates and promoted SRB activity were investigated. Acidification, volatile fatty acids (VFA), COD and fatty matter removal and volatile solids were monitored throughout the system during the study. RESULTS: Recycling of the effluent promoted VFA and COD removal as well as pH stability in both stages of the UASBRs and the effluent where high alkalinity levels were recovered reducing alkali requirement to 0.05 g OH g?1 CODapplied. Higher removal rates of 71–100 and 50–92% for VFA and COD were obtained by use of recycling. Fatty matter was removed at 63–89% throughout the study. Volatile solids build‐up was significant in the inlet zones of the UASBRs. CONCLUSIONS: The system produced efficient acidification in the PA tank, balanced pH levels and an effluent high in alkalinity and BOD/COD ratio. Efficient VFA removal and solids immobilization was obtained in both stages up to the highest loading rate. Recycling improved the system performance under high fatty matter loading conditions. A major advantage of the sequential system was that the second stage UASBR compensated for reduced performance in the first stage. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
The direct treatment of whey wastewater at various sludge ages (10–75 days) and high biomass concentration (above 50 g mixed liquor suspended solid (MLSS) dm?3) in a submerged membrane bioreactor (sMBR) is described. The chemical oxygen demand (COD) of raw whey varied in the range of 60 and 90 g dm?3. After feeding the sMBR with raw whey, effluent COD reduced to about 20 g dm?3. The effluent was free of suspended solids and total coliform bacteria. Total phosphorus (TP) and orthophosphate (Ortho‐P) in the influent varied between 204 and 880 mg dm?3 and between 180 and 620 mg dm?3, and effluent TP and Ortho‐P reduced to 113 and 109 mg dm?3, respectively. The ammonium and nitrate concentrations in the influent were in the ranges of 3.4 and 120 mg dm?3 and 10 and 503 mg dm?3, respectively. The effluent ammonium concentration varied between 17.6 and 198 mg dm?3 and nitrate concentrations varied between 0.9 and 69 mg dm?3. Effluent turbidity varied between 23 and 111 FAU (Formazin Attenuation Unit). The results show that sMBR is an effective pre‐treatment system for high‐strength agro‐wastewaters because of its ability to reduce the pollution load. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
The treatment of phenolic wastewater was investigated in a gas–liquid–solid fluidised bed bioreactor containing polypropylene particles of density 910 kg m?3. Measurements of chemical oxygen demand (COD) versus residence time (t) were performed for various ratios of settled bed volume to bioreactor volume (Vb/VR) and air velocities (u) to determine the values of (Vb/VR) and u for which the largest reduction in COD occurred. Optimal operation, corresponding to the largest COD removal, was attained when the bioreactor was controlled at the ratio (Vb/VR) = 0.55 and an air velocity u = 0.036 m s?1. Under these conditions, the value of COD was practically at steady state for times greater than 50 h. At this steady state, only about 50% COD removal was achieved in the treatment of a ‘raw’ wastewater (no mineral salts added), whereas in the operation with wastewater enriched in nutrient salts approximately 90% COD removal was attained. The following amount of mineral salts (mg dm?3): (NH4)2SO4—500; KH2PO4—200; MgCl2—30; NaCl—30; CaCl2—20; and FeCl3—7, when added to wastewater before treatment, was sufficient for biomass growth. The application of low density particles (used as biomass support) in a bioreactor allowed the control of biomass loading in the apparatus. In the cultures conducted after change in (Vb/VR) at a set u, the steady state mass of cells grown on the particles was achieved after approximately 6 days of operation. With change in u at a set (Vb/VR), the new steady state biomass loading occurred after culturing for about 2 days. Phenolic wastewater was successfully treated in a bioreactor. In the operation conducted in a bioreactor optimally controlled at (Vb/VR) = 0.55, u = 0.036 m s?1 and t = 50 h, conversions greater than 99% were achieved for all phenolic constituents of the wastewater. Conversions of about 90% were attained for other hydrocarbons. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
A pilot-scale test was conducted in a membrane bioreactor (MBR) for 452 days to treat high-strength traditional Chinese medicine (TCM) wastewater from two-phase anaerobic digest effluent. This study focuses on the chemical oxygen demand (COD) reduction and inorganic suspended solid (ISS) accumulation. The wastewater was high in COD, varying daily between 259 and 12,776 mg L−1. Almost all the COD was removed by the MBR system, leaving a COD of <50 mg L−1 in the MBR effluent. This indicated a great potential of the MBR in TCM wastewater reuse. ISS produced in the bioreactor by metabolism of microorganism increased from 265 to 4912 g h−1, which showed that there were large numbers of ISS accumulation in the bioreactor. Two models, built on the material balances of COD and ISS, were developed for the simulation of MBR system performance in the biodegradation of TCM wastewater. Consequently, the kinetic constants including the maximum substrate specific biodegradation rate (Vmax), the half-saturation coefficient (Ks) and the inorganic suspended solids growth rate (k) were calculated as Vmax, 3.64, 3.82, 4.39 d−1, Ks, 56.4, 225, 394 mg L−1 and k, 265, 888, 4912 mg L−1 d−1 using the operational data at different hydraulic retention times (HRTs). The models well fitted the pilot-scale experimental data, and were able to simulate the COD reduction and ISS accumulation.  相似文献   

18.
By maintaining the same operational conditions of one conventional fluidized‐bed bioreactor (CFB) and two tapered fluidized‐bed bioreactors (TFBs), the performance of the TFBs with taper angles of 5 ° and 2.5 ° were found to be superior to that of the CFB with a taper angle of 0 °. Experimental results together with statistical analyses showed that the bioparticle and hydrodynamic characteristics of the TFBs were significantly different from those of the CFB. Also, bioparticle stratification occurred in the three bioreactors. The biofilm thickness (δ) and the specific biomass (β) of the three bioreactors varied in the following decreasing order 5 ° > 2.5 ° > 0 ° under the same volumetric loading. Meanwhile, the specific energy dissipation rate (ω) and the bioparticle washout rates (W = 0.214 ± 0.219; 0.537 ± 0.493 g BAC dm−3day−1) of the two TFBs were considerably lower than that of the CFB (W = 1.086 ± 0.916 g BAC dm−3 day−1). A lower ω value results in increases in δ and β, and a lower dry density of the biofilm (ρd). Accordingly, the performance enhancement with TFBs should be related to their lower ω and W, thicker δ and larger β values. © 2000 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Conventional wastewater treatment plants (WWTPs) tend to partially remove recalcitrant chemicals, such as pharmaceuticals. Among these, the synthetic estrogen 17α‐ethinylestradiol (EE2) is of great environmental concern. In this work a continuously aerated submerged fixed bed bioreactor was used for the biological removal of EE2 at µg L?1 levels. RESULTS: Removal efficiencies higher than 96% were obtained at a hydraulic retention time (HRT) of 4.3 days and a volumetric loading rate (Bv) of 11 µg EE2 L?1 d?1. Increasing the Bv up to 40 and 143 µg EE2 L?1 d?1 led to slightly lower removal efficiencies, 81 and 74%, respectively. Nitrification was confirmed to be the main biological mechanism involved in EE2 removal. Most interestingly, the elimination of EE2 was not affected by the absence of ammonium in the feed, suggesting that ammonia‐oxidizing bacteria (AOB) were able to maintain their population density and their activity, even after several months of starvation. CONCLUSION: The concept of an aerated submerged fixed bed bioreactor, capable of removing estrogens in a sustainable and biological way, shows great potential as an effluent polishing step for existing WWTPs. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
The removal of organic pollutants from synthetic wash wastewater by a combined multi‐phase electro‐catalytic oxidation method was evaluated using porous graphite as anode and cathode, and CuO–Co2O3–PO43? modified kaolin as catalyst. The synergic effect on COD removal was studied when integrating the electro‐chemical reactor with the effective modified kaolin in a single undivided cell; the results showed that higher COD removal efficiency was obtained than those obtained using the individual processes. Under optimal conditions of pH 3, 30 mA cm?2 current density, very effective reduction of organic pollutants was achieved with this combined electro‐chemical method. High removal efficiency (90%) of the chemical oxygen demand (COD) was obtained in 60 min in the treatment of simulated wash wastewater (anionic surfactant, sodium dodecyl benzene sulfonate [DBS]). This method was also applied to treat wastewater form paper‐making and resulted in a COD reduction of 84%. Based on the investigation, a possible mechanism of this combined electro‐chemical process was proposed. The pollutants in wastewater could be decreased by the high reactive OH? that were produced via the decomposition of electro‐generated H2O2 activated by the synergic effect of electro‐field and catalyst. The results indicate that the multi‐phase catalytic electro‐chemical oxidation process is a promising technique for wastewater treatment. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号