共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanical performance and flame retardancy of polypropylene composites containing zeolite and multiwalled carbon nanotubes 下载免费PDF全文
Intumescent‐flame‐retarded polypropylene (PP‐IFR) composites were prepared by the incorporation of methyl hydrogen siloxane treated ammonium polyphosphate and dipentaerythritol in a twin‐screw extruder. The effects of zeolite (Z), multiwalled carbon nanotubes (CNTs), and maleic anhydride grafted polypropylene on the flame retardancy, mechanical properties, and thermal stability of PP‐IFR were investigated. The addition of Z and CNT promoted the flame retardancy of PP‐IFR, and the highest limited oxygen index was 35.6%, obtained on PP‐M‐IFR‐2–Z, for which the heat‐release rate, total heat release, and smoke production rate based on cone calorimetry analyses decreased by 45.0, 51.0, and 66.3%, respectively, in comparison with those values of the PP‐IFR composites. Additionally, scanning electron microscopy analyses showed that there was a good interface interaction between the polypropylene matrix and additives. The flexural, tensile, and impact strengths of the PP‐IFR composites were improved significantly with the incorporation of CNT. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42875. 相似文献
2.
The flame retardancy and mechanical properties of jute/polypropylene composites enhanced by ammonium polyphosphate/polypropylene powder 下载免费PDF全文
Surface flame retarded jute/polypropylene composites (J/P/A) were prepared via a modified strategy: the mixture of PP and APP powder was spread over the surface of jute/PP nonwoven felts, and then transformed into the flame retarded layer by the hot pressing process. The flame retardancy and thermal properties of composites were analyzed by limit oxygen index (LOI), horizontal burning rate (HBR), thermogravimetric analyses (TGA), and differential scanning calorimetry (DSC). We demonstrated that the flame retardancy and mechanical properties of composites was significantly improved compared with those obtained by presoaking the nonwoven fiber felts in flame retardant (FR) solvent before hot pressing. The mechanism of thermal degradation of jute fiber and flame‐retardant mechanism of composites were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and scanning electron microscope (SEM). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43889. 相似文献
3.
Sergio de Juan Junhao Zhang Pablo Acua Shibin Nie Zhiqi Liu Wen Zhang María Luisa Puertas Antonio Esteban‐Cubillo Julio Santarn De‐Yi Wang 《火与材料》2019,43(8):961-970
In this work, an efficient approach to improving the fire retardancy and smoke suppression for intumescent flame‐retardant polypropylene (PP) composites is developed via incorporating functionalized sepiolite (organo‐modified sepiolite [ONSep]). The PP composites with different amounts of intumescent flame retardants and ONSep were prepared by melt compounding. The morphology, thermal behavior, fire retardancy, smoke suppression, and mechanical property of flame‐retardant PP composites were studied. The results indicate an appropriate amount of ONSep in the flame‐retardant PP composites can increase thermal degradation temperature and char formation as well as a reduction of the peak heat release rate and total heat release; moreover, the addition of ONSep significantly decreases the CO production, total smoke production, smoke production rate, and smoke temperature. Simultaneously, the impact strength of intumescent flame‐retardant PP composite is also maintained by introducing an appropriate amount of ONSep as compared with that without ONSep. 相似文献
4.
Li Dang Xueying Nai Donghai Zhu Naicai Xu Yaping Dong 《Journal of Adhesion Science and Technology》2013,27(16):1839-1857
Two kinds of compatilizers, maleic anhydride grafted polyolefin elastomer (POE-g-MAH) and maleic anhydride grafted polypropylene (PP-g-MAH), were incorporated into a polypropylene/magnesium oxysulfate whisker (PP/MOSw) composite. Scanning electron microscopy pictures presented a clear interface between MOSw and the PP matrix in the PP/MOSw composite, while vague interfaces appeared in the PP/iPOE-g-MAH/5MOSw and PP/iPP-g-MAH/5MOSw composites. Dynamic mechanical thermal analysis results indicated that PP-g-MAH was highly compatible with the PP matrix while POE-g-MAH was not. Impact strength results showed that POE-g-MAH had a superior toughening effect on PP/MOSw composites, since the proper interfacial interaction and appearance of β-crystal PP. However, incorporating PP-g-MAH seemed to be conducive to increasing strength and modulus (both for tensile and flexural tests), as evidenced by the greatly raised interfacial adhesion between the PP matrix and MOSw. Quantitative characterization carried out by Turcsányi equation for ternary composites also confirmed that PP-g-MAH efficiently enhanced interfacial interaction, by the proof of higher B values. Therefore, the thermal stability of PP-g-MAH treated composites was far superior to that of PP/iPOE-g-MAH/5MOSw composites. Differential scanning calorimetery and polarized light microscopy results showed that POE-g-MAH promoted PP nucleation, with effects further enhanced with the presence of PP-g-MAH. 相似文献
5.
Wenqian Wu Yiting Xu Haiyang Wu Jinmei Chen Min Li Ting Chen Jing Hong Lizong Dai 《应用聚合物科学杂志》2020,137(1):47710
In this work, the small molecule with double-phosphaphenanthrene structure was successfully grafted on the surface of graphene oxide (GO), which is called functionalized graphene oxide (FGO). The introduction of FGO improved the poor interfacial compatibility between graphene and epoxy matrix. And FGO could be used as the highly effective flame retardant. The thermogravimetric analysis results showed a significant improvement in the char yield of cured FGO/EP. When the content of FGO was 3 wt %, the limiting oxygen index value reached 30.4%. At the same time, the three-point bending and thermomechanical tests confirmed that the mechanical properties of the epoxy resin composites were improved. Based on the char analyses of SEM images and Raman spectroscopy, the flame retardant could promote the formation of a stable carbon layer. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 47710. 相似文献
6.
The aim of this study is to improve the flame resistance and toughness of poly(lactic acid) (PLA) with the addition of low amount of flame retardant fillers and plasticizer simultaneously. Poly(ethylene glycol) (PEG) was used as plasticizer for PLA. Ammonium polyphosphate, boron phosphate, and tri‐phenyl phosphate (TPP) were used as flame retardant additives. Among these flame retardant additives, boron phosphate was synthesized from its raw materials by using microwave heating technique. Characterization of PLA/PEG‐based flame retardant composites was performed by conducting tensile, impact, differential scanning calorimeter, thermal gravimetric analysis, scanning electron microscope, limiting oxygen index, and UL‐94 vertical burning tests. Mechanical tests showed that the highest tensile strength, impact strength, and elongation at break values were obtained with the addition of ammonium polyphosphate and TPP into PLA/PEG matrix, respectively. Scanning electron microscopy analysis of the composites exhibited that the more homogeneous filler distribution in the matrix was observed for TPP containing composite. The best flame retardancy performance was also provided by TPP when compared with the other flame retardant additives in the plasticized PLA‐based composites. 相似文献
7.
Sanjay K. Chattopadhyay R. K. Khandal Ramagopal Uppaluri Aloke K. Ghoshal 《应用聚合物科学杂志》2011,119(3):1619-1626
Short bamboo fiber reinforced polypropylene composites were prepared by incorporation of various loadings of chemically modified bamboo fibers. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as compatibilizer to improve fiber–matrix adhesion. The effects of bamboo fiber loading and modification of the resin on the physical, mechanical, thermal, and morphological properties of the bamboo reinforced modified PP composites were studied. Scanning electron microscopy studies of the composites were carried out on the interface and fractured surfaces. Thermogravimetric analysis and IR spectroscopy were also carried out. At 50% volume fraction of the extracted bamboo fiber in the composites, considerable increase in mechanical properties like impact, flexural, tensile, and thermal behavior like heat deflection temperature were observed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
8.
M. B. Abu Bakar Z. A. Mohd Ishak R. Mat Taib H. D. Rozman S. Mohamad Jani 《应用聚合物科学杂志》2010,116(5):2714-2722
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
9.
Whole hop bines (HBs), the peeled outer bark (OB) of HBs, and fibers chemically extracted from hop bark (HFs) were used as reinforcements to make lightweight composites with polypropylene (PP) webs or fibers as the matrix materials. Using discarded HBs for composites not only increases the value of hop crops but also provides a green, sustainable, and biodegradable material for the composite industry. Lightweight composites are preferred, especially for automotive applications because of the potential energy savings. In this research, the effects of the processing parameters on the properties of PP composites reinforced with HBs were studied. The composites reinforced with OB without any chemical treatment showed better properties than the composites reinforced with HFs or HBs. Compared with jute–PP composites of the same density (0.47 g/cm3), composites reinforced with OB had 43% higher flexural strength, 46% higher impact resistance, 56% higher Young's modulus, similar modulus of elasticity, 33% lower tensile strength, and better sound‐absorption properties. OB–PP composites with optimized properties have the potential to be used in industrial applications such as support layers in automotive interiors, ceiling tiles, and office panels. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
10.
This article describes the impact and dynamic mechanical properties of rubber‐modified binary blends of polypropylene (PP). Two conventional elastomers [viz. ethylene vinyl acetate copolymer (EVA) and ethylene propylene diene terpolymer (EPDM)] were used as an impact modifier for PP. It is clearly indicated by the results that EPDM is better than EVA as an impact modifier of PP. Analysis of data of dynamic mechanical properties and impact properties at various compositions of the blends revealed a direct correlation between impact properties and dynamic mechanical loss tangent. The energy dissipation due to viscoelastic relaxation is therefore suggested as a mechanism of impact toughening of PP, in addition to the other commonly known mechanisms of toughening (viz. shear yielding and crazing induced by deformation of rubber‐phase domains). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 962–971, 2000 相似文献
11.
Modified Mg(OH)2/polypropylene (PP) composites were prepared by the addition of functionalized polypropylene (FPP); and acrylic acid (AA) and by the formation of in situ FPP. The effects of the addition of FPP and AA and the formation of in situ FPP on the mechanical properties of Mg(OH)2/PP composites were investigated. Experimental results indicated that the addition of Mg(OH)2 markedly reduced the mechanical properties of PP. The extent of reduction in notch impact strength of PP was higher than that in flexural strength and tensile strength. However, tensile modulus and flexural modulus increased with increased Mg(OH)2 content. The addition of FPP facilitated the improvement in the flexural strength and tensile strength of Mg(OH)2/PP composites. The higher the Mg(OH)2 content was, the more significant the effect of FPP was. The incorporation of AA resulted in further increased mechanical properties, in particular the flexural strength, tensile strength, and notch impact strength of Mg(OH)2/PP composites containing high levels of Mg(OH)2. It not only improved mechanical properties but also increased the flame retardance of Mg(OH)2/PP composites. Although the mechanical properties of composites modified by the formation of in situ FPP were lower than those of composites modified by only the addition of AA in the absence of diamylperoxide, the mechanical properties did not decline with increased Mg(OH)2 content. Moreover, the mechanical properties increased with increasing AA content. The addition of an oxidation resistant did not influence the mechanical properties of the modified Mg(OH)2/PP composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2139–2147, 2003 相似文献
12.
Composites of serpentine and polypropylene (PP) were prepared by twin‐screw extrusion. Serpentine was collected as rocks from the Ankara–Beynam region and ground into powder with an average particle size of about 3 μm for composite production. Both as‐received (rock) and powdered serpentine were characterized. A silane coupling agent (SCA), γ‐aminopropyl triethoxy silane, was used for the surface treatment of serpentine. Mechanical properties of the composites were measured in terms of impact strength, elastic modulus, stress at yield, stress at break, and percentage strain at break. The addition of serpentine was found to have a profound effect on the reinforcement of the PP matrix. Because of the stronger interactions at the interphase induced by SCA treatment, mechanical properties were improved further in comparison with the untreated composites. Similar thermal and morphological behaviors were recorded for the composites with and without surface treatment. Thermal studies showed an increase in both melting temperature and percentage crystallinity of the composites. Scanning electron microscopy analysis revealed that homogeneous distribution of filler was observed at low filler contents, but a certain extent of agglomeration was also seen at high filler loadings. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
13.
Microcapsulated chlorocyclophosphazenes were synthesized,and then microcapsulated chlorocyclo- phosphazene/polypropylene(PP)composites were prepared.The results showed that microcapsulated chlorocyclo- phosphazene had good high thermal stability through thermogravimetric analysis(TGA).The flammability and mechanical properties of microcapsulated chlorocyclophosphazene/polypropylene composites were investigated by limiting oxygen index experiment,UL 94V flame retardancy test,cone calorimetry,tensile experiment,and impact test,respectively.It was shown that the microcapsulated chlorocyclophosphazene/PP composites had better tensile strength,impact strength,flame retardant properties and smoke suppress properties compared with chlorocyclo- phosphazene/PP composites. 相似文献
14.
Cellulose- and lignin-based fillers can significantly enhance the mechanical properties and flame retardancy of biomass polyesters, whereas complicated and high-cost processes may be necessary for the extraction. Thus, we explored the direct use of eucommia residues (ERs), a plantation waste containing rich lignocellulosic substances (ca. 18% cellulose, 13% hemicellulose, and 35% lignin), to reinforce polyesters and improve their flame retardancy. With poly(butylene succinate) (PBS) as the polyester matrix, the ER could enhance the tensile and flexural modulus of polyester-based composite by 87 and 72%, respectively, via a facile melt-mixing method with 30 wt % ER. Such enhancements, accompanying cost reduction, came from the cellulose crystallinity and rigid chemical structure of lignin, along with the strong interaction between ER and PBS. Besides, the carbon residue of PBS/ER composites in the flame-retardant study could maximally increase by 508%, benefited from the immense hex-carbon rings of cellulose and lignin in ERs. The ER also reduced the peak heat release rate and total heat release of PBS by 43 and 20%, respectively. This work reduces the pressure from waste treatment, promotes the high-value application of plantation lignocellulosic-rich wastes in package plastics and membranes, and supports sustainable material development based on biomass multicomponents resources. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48543. 相似文献
15.
G. Bosscher R. H. Wieringa A. P. Jekel J. C. van de Grampel 《Journal of Inorganic and Organometallic Polymers》1996,6(3):255-265
The thermal behavior of the following systems have been investigated by TGA and XPS: the homopolymer of N:P:Cl4(CH2)(CH2C6H4CH–CH2) (1). copolymers of1 with MMA and styrene, and copolymers of N:P:Cl4(1-C3II) [C[OC(O)CH3]–CH3] (2) with MMA and styrene. Upon heating under TGA conditions the highest char yield (64wt0
0) is found for the homopolymer of1. The char yields for the copolymers appear to increase with increasing amounts of phosphazene incorporated. The one-step weight loss observed for the homopolymer of1 can be ascribed mainly to climination of HCl. The1 styrene copolymers decompose in one step, indicating that HCl elimination, ring degradation, and depolymerization take place simultaneously. The1 MMA copolymers show a two-step degradation. From XPS scans it follows that complete loss of chlorine takes place in the first step and probably in combination with some depolymerization of MMA units. In the second step phosphazene ring degradation is observed, accompanied by further carbonization of the sample. The2 styrene copolymers start to decompose about 100 C lowe than the1 MMA copolymers, also exhibiting a two-step TGA curve. The first step can be associated with breakdown of polymer chains at the C–C linkage between inorganic monomers. In the second step depolymerization of the styrene sequences. HCl elimination, and ring degradation occur. 相似文献
16.
The effect of red phosphorus on the fire properties of intumescent pine wood flour – LDPE composites
Red phosphorus (RP) was used to improve the fire performance of wood flour – low density polyethylene (LDPE) composites containing ammonium polyphosphate (APP). The fire performance of LDPE‐based composites was investigated by using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis, and cone calorimeter. The addition of 30 wt% APP increased the LOI value from 17.5 to 24.2 and still burned to clamp (BC) in UL‐94 test. The RP showed beneficial effect when combinedly used with APP. The maximum beneficial effect was seen at ratio of 5:1 (APP : RP) with the highest LOI value of 27.2 and UL‐94 rating of V0. RP showed its beneficial effect via increasing the gas phase action of the flame retardant system. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
Vahabodin Goodarzi Seyed Ali Monemian Mahmood Torabi Angaji Siamak Motahari 《应用聚合物科学杂志》2008,110(5):2971-2979
In the present research, the thermal stability and fire properties of polypropylene (PP) have been improved through direct melt intercalation of PP, organically modified montmorillonite (OMMT), calcium carbonate (CaCO3) nanoparticles, and conventional flame retardants, i.e., decabromodiphenyl oxide (DB) and antimony trioxide (AO). The morphology of the compound was characterized by means of X‐ray diffractometry and transmission electron microscopy. Thermogravimetry analysis (TGA), cone‐calorimetry, limiting oxygen index, UL‐94, and tensile tests were also employed to investigate thermal and mechanical properties as well as the flammability of the compounds. Data, obtained from TGA, indicated that simultaneous incorporation of both OMMT and CaCO3 nanoparticles forms a synergistic effect to improve both the thermal and thermo‐oxidative stability. The kinetic analysis of polymer degradation showed that the presence of nanoparticles hindered the thermal degradation of PP. The combination of OMMT and CaCO3 was more effective to improve fire properties than OMMT and DB/AO. The experimental results indicated that the incorporation of OMMT and CaCO3 improved both the tensile (i.e., the increase of yield strength, tensile strength, and Young's modulus) and thermal properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
18.
Jing Guo Siyang Mu Chunfang Yu Chengnv Hu Fucheng Guan Hong Zhang Yumei Gong 《应用聚合物科学杂志》2015,132(36)
Basalt fabric (BF) was first treated with silane coupling agent KH550, modified basalt fabric (MBF) was obtained. Then MBF were molded with polypropylene (PP) matrix, and polypropylene/modified basalt fabrics (PP/MBF) composites were obtained. The influence of concentration and treating time of KH550 on MBF were characterized by hydrophilicity and lipophilicity. The tensile strength and morphology of basalt fabric were tested by single filament strength tester and scanning electron microscopy. The mechanical properties of composites were measured with electronic universal testing machine and impact testing machine, and the thermal properties were tested by thermogravimetric analysis and dynamic mechanical analysis. The results showed that the lipophilicity of MBF is improved significantly by KH550 while the tensile is nearly damaged. The mechanical properties of composites are larger than that of pure PP, among which the impact property was improved the most, showing 194.12% enhancement. The thermal stability and dynamic viscoelasticity were better than pure PP; furthermore, the concentration of KH550 virtually had no effect on the thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42504. 相似文献
19.
The effect of oxidized polypropylene (OPP) as new compatibilizer on the water absorption and mechanical properties of wood flour–polypropylene (PP) composites were studied and compared with maleic anhydride grafted polypropylene (MAPP). The oxidation of PP was performed in the molten state in the presence of air. Wood flour, PP, and the compatibilizers (OPP and MAPP) were mixed in an internal mixer at temperature of 190°C. The amorphous composites removed from the mixer were then pressed into plates that had a nominal thickness of 2 mm and nominal dimensions of 15 × 15 cm2 with a laboratory hydraulic hot press at 190°C. Physical and mechanical tests showed that the wood flour–PP composites with OPP exhibited higher flexural and impact properties but lower water absorption than MAPP. All of the composites with 2% compatibilizers (OPP and MAPP) gave higher flexural and impact properties and lower water absorption compared to those with 4% compatibilizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
20.
An in situ deposition approach was used for the synthesis of nano‐CaSO4 and nano‐Ca3(PO4)2. The nanosize particles were confirmed with an X‐ray diffraction technique. Composites of polypropylene (PP) with 0.1–0.5 wt % nano‐ or commercial CaSO4 or nano‐Ca3(PO4)2 were prepared. The transition from the α phase to the β phase was observed for 0.1–0.3 wt % nano‐CaSO4/PP and nano‐Ca3(PO4)2/PP composites. This was confirmed by Fourier transform infrared. A differential scanning calorimetry analysis was carried out to determine the thermal behavior of the nanocomposites with increasing amounts of the nano‐CaSO4 and nano‐Ca3(PO4)2 fillers. Increases in the tensile strength and Young's modulus were observed up to certain loading and were followed by a decrease in the tensile strength. A continuous decrease in the elongation at break (%) was also observed for commercial CaSO4 and larger nano‐Ca3(PO4)2. A decrease in the mechanical properties after a certain loading might have been due to the agglomeration and phase transition of PP in the composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 670–680, 2007 相似文献