首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyimide/silica (PI/SiO2) nanocomposite films with 10 wt % of silica content were prepared by sol–gel process under the conditions with and without additional water. The presence of additional water has great effect on the silica particle size and thus on the properties of the prepared PI/SiO2 films. The results indicated that with additional water, the silica particles formed before the imidization of poly(amic acid) (PAA) and aggregated with the increasing of temperature and degree of the proceeding imidization process. For the nonaqueous process, the hydrolysis condensation reaction of tetraethoxysilane (TEOS) did not occur until the imidization of PAA took place, and no silica particles were found in the unimidized PAA films. The hydrolysis–condensation reaction of TEOS was initiated simultaneously by the trace water released from the imidization reaction, the self‐catalysis mechanism of the approach provide a means of achieving uniformly dispersed silica particles formed in the PI matrix with particle size in the range of 30–70 nm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1579–1586, 2007  相似文献   

2.
Dielectric and conduction properties of polyimide/silica nano‐hybrid films were investigated with the silica content and the testing frequency, using a small electrode system. The hybrid films were prepared through sol‐gel process and thermal imidization, by using pyromellitic dianhydride and 4,4′‐oxydianiline as polyimide precursors, and tetraethoxysilane and methyltriethoxysilane as silica precursors. The dielectric coefficient of PI/SiO2 films was monotonically increased with increasing silica content, and decreased with increasing testing frequency. The dielectric loss of PI/SiO2 films had no obvious changes with increasing silica content, but monotonically increased with increasing testing frequency. These can be contributed to the different quantity and migration chunnels of current carriers, which were mainly influenced by a few of complicated factors. There were remarkable differences between conduction property of PI/TEOS‐SiO2 films and PI/MTEOS‐SiO2 films because of the different size and dispersion status of silica particles in the polyimide matrix. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
微滴乳液聚合制备PDMS/SiO2纳米复合材料   总被引:1,自引:1,他引:0       下载免费PDF全文
杨磊  许湧深  邱守季  张娅 《化工学报》2013,64(4):1473-1477
采用超声分散的方法,以少量八甲基环四硅氧烷(D4)对硅溶胶粒子进行表面接枝改性。然后在改性硅溶胶存在下,以十二烷基苯磺酸(DBSA)为乳化剂兼催化剂进行D4的微滴乳液聚合,得到聚硅氧烷(PDMS)/二氧化硅(SiO2)纳米复合乳液。采用FTIR、TGA、纳米粒度仪、TEM和拉力机分别对样品进行了表征。结果表明:采用超声分散的方法,能够有效地实现硅溶胶粒子的表面改性。通过微滴乳液聚合得到的复合乳胶粒是聚合物包覆二氧化硅粒子的核壳结构形态。SiO2的引入提高了有机硅复合膜力学性能,增强了热稳定性。  相似文献   

4.
《Polymer Composites》2017,38(4):774-781
In this article, a series of new silica/polyimide (SiO2/PI) nanocomposite films with high dielectric constant (>4.0), low dielectric loss (<0.0325), high breakdown strength (288.8 kV mm−1), and high volume resistivity (2.498 × 1014 Ω m) were prepared by the hydrolysis of tetraethyl orthosilicate in water‐soluble poly(amic acid) ammonium salt (PAAS). The chemical structure of nanocomposite films compared with the traditional pure PI was confirmed by Fourier transform infrared spectroscopy and X‐ray diffraction patterns. The results indicated that both the PAAS and the polyamide acid (PAA) material were effectively converted into the corresponding PI material through the thermal imidization and the amorphous SiO2 was embedded in the nanocomposite films without structural changes. Thermal stability of the nanocomposite films was increased though mechanical property was generally decreased with increasing the mass fraction of SiO2. All the nanocomposite films exhibited an almost single‐step thermal decomposition behavior and the average decomposition temperature was about 615°C. It was concluded that the effective dispersion of SiO2 particles in PI matrix vigorously improved the comprehensive performance of the SiO2/PI nanocomposite films and expanded their applications in the electronic and environment‐friendly industries. POLYM. COMPOS., 38:774–781, 2017. © 2015 Society of Plastics Engineers  相似文献   

5.
A series of hybrid materials incorporating imide‐modified silica (IM‐silica) network structures into a polyimide (PI) matrix were produced with a sol–gel technique from solution mixtures of poly(amic acid) and tetraethoxysilane (TEOS) containing alkoxysilane‐terminated amic acids with various degrees of polymerization. The hybrid films, obtained by solvent evaporation, were heated successively to a maximum temperature of 300°C to carry out the imidization process and silica network formation in the PI matrix. The morphology and mechanical properties of these hybrids with IM‐silica networks were studied and compared with the properties of one in which reinforcement of the matrix was achieved with a pure silica network generated from TEOS. The introduction of longer imide spacer groups into the silica network led to a drastic decrease in the silica particle size. Improved tensile modulus was observed in such compatibilized hybrid systems. Comparative thermogravimetric measurements of these hybrids showed improved thermooxidative resistance. A PI hybrid with 30% IM‐silica had a thermal decomposition temperature nearly 260°C higher than that of the pure PI matrix. The high surface area of the interconnected silica domains and increased interfacial interaction were believed to restrict the segmental motion of the polymer and thus slow the diffusion of oxygen in the matrix, thereby slowing the oxidative decomposition of the polymer. The reinforcement of existing and new PIs by this method offers an opportunity for improving their thermooxidative stability without degrading their mechanical strength. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
In this article, a series of novel polyimide/silica (PI/SiO2) nanocomposite coating materials were prepared from tetraethoxysilane (TEOS), γ‐glycidyloxypropyltrimethoxysilane (GOTMS), and polyamic acid (PAA) via sol‐gel technique. PAA was prepared by the reaction of 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and bis (3‐aminophenyl) phenyphosphine oxide (BAPPO) in N‐methyl‐2‐ pyrrolidone (NMP). BAPPO was synthesized hydrogenation of bis (3‐nitrophenyl) phenyphosphine oxide (BNPPO) in the presence of Pd/C. The silica content in the hybrid coating materials was varied from 0 to 20 wt %. The molecular structures of the composite materials were analyzed by means of FT‐IR and 29Si‐NMR spectroscopy techniques. The physical and mechanical properties of the nanocomposites were evaluated by various techniques such as, hardness, contact angle, and optical transmission and tensile tests. These measurements revealed that all the properties of the nanocomposite coatings were improved noticeable, by the addition of sol‐gel precursor into the coating formulation. Thermogravimetric analysis showed that the incorporation of sol‐gel precursor into the polyimide matrix leads to an enhancement in the thermal stability and also flame resistance properties of the coating material. The surface morphology of the hybrid coating was characterized by scanning electron microscopy (SEM). SEM studies indicated that nanometer‐scaled inorganic particles were homogenously dispersed throughout the polyimide matrix © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Polyimide/titania (PI/TiO2) nanocomposite films have been successfully fabricated through the in situ formation of TiO2 within a PI matrix via sol–gel method. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized by mixing pyromellitic dianhydride (PMDA), with equimolar amount of a diamine monomer having a pendent benzoxazole unit and two flexible ether linkages in N,N-dimethylformamide (DMF) solvent. Tetraethyl orthotitanate [Ti(OEt)4] and acetylacetone were then added to the resulted PAA. After imidization at high temperature, PI/TiO2 hybrid films were formed. The structure and morphology of the hybrid nanocomposites with different titania contents (0 wt%, 5 wt%, 10 wt%, and 15 wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. The results indicate that the TiO2 nanoparticles were homogeneously dispersed in the hybrid films. The thermogravimetric analysis of nanocomposites confirms the improvement in the thermal stability with the increase in the percentage of titania nanoparticle. Transmission electron microscopy showed that the nanoparticles with an average diameter of 25–40 nm were dispersed in the polymer matrix.  相似文献   

8.
A fluorinated polyimide (PI), synthesized from 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride and 4,4′‐diaminodiphenyl ether, was used as matrix for the preparation of PI/silica hybrids. The inorganic phase was obtained in situ by a sol–gel route with tetraethoxysilane as precursor. Both micron‐ and nano‐scale hybrids were obtained depending on the interfacial interaction between the organic and inorganic phases. To promote such interaction a compatibilizing agent was synthesized, in the form of an alkoxisilane‐terminated oligoimide. Both the PI and the coupling agent were characterized by FTIR and Raman spectroscopies and by GPC measurements. The effect of the coupling agent on the morphology of the hybrids and on the size of the silica particles was investigated by scanning electron microscopy. The viscoelastic, mechanical, and thermal properties of hybrid composites were studied. It was shown that by adding appropriate amounts of the compatibilizer it was possible to control the morphology and to obtain homogeneous nanostructured systems. A general improvement of the mechanical performances and of the thermal stability was demonstrated, together with an increase of Tg, which was found more pronounced for the nanocomposites than for the microcomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
In this article, polyimide (PI) films were fabricated via the three‐step method including the reactions of condensation polymerization, chemical imidization, and thermal imidization. In comparison with the conventional two‐step method to produce PI films, there was an additional step in the present method, i.e., chemical imidization. The aim of chemical imidization was to get PI intermediates with different pre‐imidization degree (pre‐ID). And PI component in PI intermediates acted as in‐situ rigid‐rod segments and induced orientation in the films of PI intermediates. Then the orientations of molecular chains were preserved in the following thermal imidization, and caused the difference in aggregation structure and property of the final PI films. The test results indicated that the orderly degree of molecular chains and mechanical properties of PI films increased with pre‐ID increasing. Furthermore, this tendency was much more obvious for more rigid backbone structure. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
以N,N-二甲基乙酰胺(DMAc)为溶剂,3,3',4,4'-二苯醚四甲酸二酐(ODPA)和4,4'-二氨基二苯醚(ODA)为单体,利用高压静电纺丝技术,制备了聚酰胺酸(PAA)和聚酰亚胺(PI)非织造布,并采用扫描电镜(SEM)对PAA及PI非织造布的表面形态进行表征,研究了PI非织造布的力学性能。结果表明:经300℃热亚胺化处理得到的PI非织造布,纤维平均直径减小到500nm以下,纤维的带状形貌与PAA明显不同,并且出现了收缩、弯曲等现象。静电纺丝法制得的PI非织造布的力学性能仍然比较优越。  相似文献   

11.
We report the effect of organosilica precursor isomers on the interfacial interaction between polyimide and organosilica in polyimide/organosilica hybrid composite films. Poly(4,4′‐oxydianiline biphenyltetracarboxamic acid) (BPDA‐ODA PAA) was used as the polyimide precursor, while the organosilica was made using o‐substituted, m‐substituted, and p‐substituted phenyl organosilica precursor isomers. For the preparation of precursor hybrid films, BPDA‐ODA PAA and organosilica precursors were mixed and then the organosilica precursors were converted to corresponding organosilica via sol–gel process. Finally, these precursor films were converted to corresponding polyimide/organosilica hybrid films by the thermal imidization of BPDA‐ODA PAA, which results in poly(4,4′‐oxydianiline biphenyltetracarboximide) (BPDA‐ODA PI). The polyimide/organosilica hybrid films were characterized using three distinctive nuclear magnetic resonance spectroscopies (1H NMR, 13C‐CPMAS‐NMR, and 29Si‐MAS‐NMR), wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering (SAXS), and peel strength measurement. We found that the m‐substituted phenyl organosilica shows poorer interfacial interaction with BPDA‐ODA PI than do the o‐ or p‐substituted phenyl organosilicas. It was observed, however, that the peel strength of the hybrid films against an aluminum substrate increased with increasing contents of organosilicas, regardless of the nature of the organosilica isomers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2507–2513, 2007  相似文献   

12.
Herein, we report on direct preparation of macroporous polyimide (PI) films with pores distributing on one side, the method of which relies on sedimentation of ceramic spheres in polyamic acid (PAA) solutions in a gravitational field and imidization of PAA/ceramic spheres mixtures to obtain PI/ceramic spheres hybrid films followed by curing in dilute hydrofluoric (HF) acid. In this strategy, the curing of the hybrid films in HF acid leads to the formation of pores. The introduction of pores makes the room‐temperature dielectric constants of the macroporous films lower than that of pure PI film. Moreover, the macroporous PI films have improved Young's moduli and higher thermal stability in nitrogen atmosphere. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 261–266, 2007  相似文献   

13.
Five kinds of fluorene‐based polyimides (PIs) based on 4,4′‐oxydiphthalicanhydride (ODPA), 9,9′‐bis(4‐aminophenyl)fluorene (BAFL), and 3,4′‐diaminodiphenyl ether (3,4′‐ODA) were synthesized through two‐step method. The partially or fully imidized PI films were cast from poly(amic acid) (PAA) solution and were imidized by far‐infrared radiation at various temperatures. The degree of imidization was characterized by FT‐IR and TGA. The fully imidized PI films were characterized by DMTA, TGA, and tensile tests. The partially imidized PI films were adhered to stainless steel plates for preparing the single lap joints. Lap shear strength (LSS) at room temperature was measured to compare the adhesive strength of single lap joint. Fractured surfaces were analyzed using scanning electron microscopy (SEM). The effects of fluorene content on thermal, tensile, and adhesion properties of PIs were elaborately studied. The results showed that PI films exhibited high glass transition temperature (Tg), good thermalplasticity, and thermal stability. The LSS of PIs increased abruptly with the incorporation of fluorene groups. The LSS of PI‐50/50 was the highest, which was 22.3 MPa. The LSS of PI‐50/50 was also measured at high temperature to investigate the thermal resistance of fluorene‐based PI adhesive. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.  相似文献   

14.
Polyimide/Al2O3 (PI/Al2O3) nanocomposite films based on pyromellitic dianhydride and 4,4′‐oxydianiline were fabricated by adding different proportions of nano‐Al2O3 inorganic particles via in situ polymerization. Microstructural analysis by scanning electron microscope (SEM) showed that the inorganic particles were homogenously dispersed in the PI matrix when mixed with appropriate amount of nano‐Al2O3. Fourier transform infrared spectroscopy and X‐ray diffraction analysis were also used to investigate the effect of nano‐Al2O3 on the polymerization process. The obtained composite films and pure film were characterized by thermogravimetry analysis, and the experimental results indicated that when comparing with pure film, the nanocomposite films displayed a better thermal stability than the pure one. Moreover, results also showed that the thermal stability of composite films steadily improved with increased content of nano‐Al2O3 particle. The electrical property test demonstrated that the composite films performed improving electrical breakdown strength and corona resistance. The microstructure changes of pure film and PI/Al2O3 nanocomposite films during corona aging have been analyzed by SEM. POLYM. COMPOS., 37:763–770, 2016. © 2014 Society of Plastics Engineers  相似文献   

15.
A series of novel addition cured polydimethylsiloxane (PDMS) nanocomposites with various amounts of nano‐silica sol were prepared via hydrosilylation for the first time. The influence of various amounts of nano‐silica sol on the morphology, thermal behavior, mechanical and optical properties of these PDMS nanocomposites was studied in detail. It was found that with an increment in the amount of nano‐silica sol the reinforcing effect of the nano‐silica sol on the thermal and mechanical properties of the PDMS nanocomposites was very noticeable compared with the reference material. The prominent improvements in resistance to thermal degradation and mechanical properties can probably be attributed to the strong interaction of PDMS chains and uniformly dispersed particles resulting from the nano‐silica sol. However, the transparency of the PDMS nanocomposites slightly decreased with an increment in weight fraction of nano‐silica, compared with that of PDMS composite without nano‐silica (Sol‐0), which can probably be ascribed to an increasing size of the aggregated particles in the PDMS nanocomposites. The optimum amount of nano‐silica sol for preparing novel addition curing PDMS nanocomposites was about 15 wt%. © 2015 Society of Chemical Industry  相似文献   

16.
In recent years, polyimide (PI) hybrid materials have received considerable attention owing to the dramatic enhancements over their pristine state in thermal stabilities, mechanical properties and other special features by introducing only a small fraction of inorganic additives. In this investigation, hybrid nanocomposite films of titanium dioxide (TiO2) in PI were successfully fabricated by an in situ sol–gel process starting from tetraethyl orthotitanate in the solution of poly(amic acid) in N,N-dimethylacetamide. Neat PI was prepared from the polymerization of 2-(3,5-diaminophenyl)-benzimidazole and pyromellitic dianhydride. The hybrid films were obtained by the hydrolysis–polycondensation of moisture-sensitive titania precursor in poly(amic acid) solution, followed by the elimination of solvents and imidization process. The chelating agent, acetylacetone, was used to reduce the gelation rate of titanium alkoxide. The complete imidization temperature of the poly(amic acid) was delayed; furthermore, the thermal stability of PI was enhanced through the incorporation of the inorganic moieties in the hybrid materials. The chemical and morphological structures of the hybrid materials were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. The results show that the TiO2 particles are well dispersed in the PI matrix with particle size between 15 and 30 nm in diameter.  相似文献   

17.
A novel method for preparing composites of polyimides (PI) laminated to poly(tetrafluoroethylene) (PTFE) films is reported. PI/PTFE composites were developed through thermal imidization of poly(amic acid) (PAA) precursors on surface-modified PTFE films. Surface modification of PTFE films was carried out via Ar plasma pretreatment of the films, followed by UV-induced graft copolymerization with glycidyl methacrylate (GMA). The surface composition and topography of the graft copolymerized PTFE films and the delaminated PI and PTFE surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The adhesion strengths of the PI (imidized PAA) on the GMA graft copolymerized PTFE films were evaluated as a function of various thermal imidization schedules. The adhesion reliability of the PI/PTFE composites was tested by a series of hydrothermal cycles. The development of strong Tpeel adhesion strengths of about 8 N/cm with excellent reliability for the PI/PTFE composites was attributable to the synergistic effect of coupling the curing of the epoxide functional groups of the grafted GMA chains with the imidization process of the PAA and the fact that the GMA chains were covalently tethered onto the PTFE surface. The PI/PTFE composites delaminated via cohesive failure inside the PTFE substrates. The delaminated PI film with a covalently adhered 'rough' PTFE surface layer exhibited a water contact angle as high as 140°.  相似文献   

18.
In today’s era of modern technology study of nano composite thin films are of immense importance. Unmodified PI, PVDF and PVDF incorporated PI thin films were prepared by spin coater unit using solution cast technique. PVDF was incorporated in variable lower concentrations in PI matrix at its precursor stage i.e. PAA. Thereafter, degree of crystallinity, crystalline nano particle size was evaluated using XRD and AFM technique. FT-IR was used to study the physical incorporation of PVDF particles within the PI matrix. Further, these results were used to study the microhardness, tensile and hydraulic behaviour. However, PVDF incorporated PI nano composite thin films contain overall better property in form of increased microhardness, tensile strength and less water absorption with improved morphology in comparison to unmodified film and 0.5 wt % nano composite film shows synergistic enhancement.  相似文献   

19.
The plasma polymerization of glycidyl methacrylate (GMA) on pristine and Ar plasma-pretreated Si(100) surfaces was carried out. The epoxide functional groups of the plasma-polymerized GMA (pp-GMA) could be preserved, to a large extent, through the control of the glow discharge parameters, such as the radio-frequency (RF) power, carrier gas flow rate, system pressure, and monomer temperature. The pp-GMA film was used as an adhesion promotion layer for the Si substrate. The polyimide (PI)/pp-GMA-Si laminates, formed by thermal imidization of the poly(amic acid) (PAA) precursor poly(pyromellitic dianhydride-co-4,4′-oxydianiline) (PMDA-ODA) on the pp-GMA-deposited Si surface (the pp-GMA-Si surface), exhibited a 180°-peel adhesion strength as high as 9.0 N/cm. This value was much higher than the negligible adhesion strength for the PI/Si laminates obtained from thermal imidization of the PAA precursor on both the pristine and the argon plasma-pretreated Si(100) surfaces. The high adhesion strength of the PI/pp-GMA-Si laminates was attributed to the synergistic effect of coupling the curing of epoxide functional groups in the pp-GMA layer with the imidization process of the PAA, and the fact that the plasma-deposited GMA chains were covalently tethered onto the Si(100) surface. The chemical composition and structure of the deposited films were characterized, respectively, by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy, while the surface morphology of the deposited films was characterized by atomic force microscopy (AFM).  相似文献   

20.
To investigate the effect of reactive end‐capping groups on film‐forming quality and processability, a series of molecular weight‐controlled aromatic poly(amic acid) (PAA) resins functionalized with phenylethynyl end groups were prepared via the polycondensation of 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), para ‐phenylenediamine (PDA), and 4‐phenylethynyl phthalic anhydride (PEPA) served as molecular‐weight‐controlling and reactive end capping agent. The PAA resins with relatively high concentrations endow enhanced wetting/spreading ability to form PAA gel films by solution‐cast method which were thermally converted to the fully‐cured polyimide (PI) films. The mechanical and thermal properties of PI films were investigated as a function of PAA molecular weights (Mn ) and thermal‐curing parameters. Mechanical property, dimensional stability and heat resistance of the fully‐cured PI films with PAA Mn > 20 ×103 g mol?1 are found to be better than that of their unreactive phthalic end‐capped counterparts. The covalent incorporation of chain‐extension structures in the backbones, induced by thermal curing of phenylethynyl groups, might facilitate yielding a higher degree of polymer chain order and consequently improved resistance strength and elongation at break to tensile plastic deformation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45168.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号