首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以牌号140聚丙烯树脂作为基料,使用高效成核剂生产出一种高刚耐热聚丙烯树脂。文中分析了制备高刚耐热聚丙烯树脂时,成核剂的种类和添加比例对改性PP(140)性能的影响。筛选出添加0.10wt%CHJ-3#成核剂制备的高刚耐热聚丙烯树脂力学性能最佳,其拉伸强度达到40.8 MPa,拉伸断裂标称应变为10.63%,拉伸断裂应力35.1 MPa,弯曲模量为1994.63MPa,邵氏硬度为71.9,悬臂梁冲击强度为3.33 k J/m~2,负荷热变形温度高达122℃。  相似文献   

2.
将纳米ZnO(nano-ZnO)用钛酸酯偶联剂表面处理后制备聚丙烯(PP)/nano-ZnO复合材料。研究了nano-ZnO含量对复合材料耐老化性能的影响。nano-ZnO可明显改善PP树脂的紫外光老化性能。当w(nano-ZnO)为3%时,复合材料老化前后的性能差和纯PP树脂老化前后的性能差分别为:拉伸强度1.9 MPa和3.1 MPa、断裂伸长率为29.0%和66.7%、缺口冲击强度为1.1 kJ/m~2和2.9 kJ/m~2、无缺口冲击强度为1.5 kJ/m~2和3.2 kJ/m~2、球压痕硬度为4.8 MPa和5.8 MPa、维卡软化温度为3.3℃和7.0℃。  相似文献   

3.
采用汽车内饰的黄麻纤维板材回收破碎,通过侧喂料喂入进行共混加工,最佳加工温度为190℃,最终注塑成短纤维增强复合材料。当纤维含量为20%时,复合材料力学性能与滑石粉/聚丙烯材料的相互媲美,而且密度下降9%左右,满足汽车内饰聚丙烯材料轻量化和绿色化的要求。基于此,采用马来酸酐接枝聚丙烯(MAPP)来提高材料力学性能。当MAPP质量分数为3%时,复合材料拉伸强度、弯曲强度和冲击强度分别达最大值为35.5 MPa、58.3 MPa和2.9 J/m,而拉伸模量和弯曲模量最大值为3 452、2 797 MPa。  相似文献   

4.
周健  周力 《合成树脂及塑料》2012,29(4):45-47,69
在Innovene工艺聚丙烯(PP)装置上成功开发了汽车保险杠专用PP树脂K9015,产品主要性能指标达到要求:熔体流动速率为17.9 g/10 min,弯曲模量为660 MPa,拉伸屈服强度为17.7 MPa,悬臂梁缺口冲击强度(-20℃)为660 MPa,热变形温度(0.45 MPa)为92℃。  相似文献   

5.
采用磷氮系膨胀型阻燃剂与短玻璃纤维协同改性聚丙烯,制备了高氧指数高刚性聚丙烯,研究了阻燃剂与玻璃纤维对聚丙烯阻燃性能、力学性能、微观形貌的影响,以及改性聚丙烯对加工温度和螺杆转速的敏感性。结果表明:添加质量分数分别为30%阻燃剂和15%玻璃纤维的聚丙烯极限氧指数达到45.5%,垂直燃烧等级达到UL 94 V-0级,拉伸强度为70 MPa,弯曲强度为77.75 MPa,弯曲模量达到4 498 MPa,简支梁缺口冲击强度为5.03 kJ/m2;玻璃纤维显著提高了聚丙烯的熔体黏度,提高加工温度和螺杆转速均能使聚丙烯的塑化时间降低,加工温度对塑化时间的影响相对更大,而平衡转矩和物料温度对转速的敏感性则更强,加工过程中需要重视加工温度和螺杆转速对聚丙烯综合性能的影响。  相似文献   

6.
《塑料》2019,(6)
以微晶纤维素(MCC)为填料、马来酸酐接枝聚丙烯(PP-g-MAH)作界面相容剂和无规共聚聚丙烯(r PP)为基体,通过熔融共混法制备MCC/PP-g-MAH/r PP复合材料。研究了PP-g-MAH对MCC/PP-g-MAH/r PP力学性能、界面形貌、热稳定性和结晶动力学的影响。结果表明,PP-g-MAH提高了MCC和r PP的界面相容性。随着PP-g-MAH含量增加,MCC/PP-g-MAH/r PP的拉伸强度、拉伸模量均呈现先上升后下降的趋势,弯曲强度、弯曲模量呈现上升趋势。当PP-g-MAH含量为5%时,MCC/PP-g-MAH/r PP的力学性能最佳,拉伸强度为28. 46 MPa、弯曲强度为44. 22 MPa、冲击强度为0. 47 k J/m2分别比MCC/r PP拉伸强度(17. 80 MPa)、弯曲强度(28. 80 MPa)、冲击强度(0. 38 k J/m2)提升了60. 1%、53. 5%、23. 7%,r PP热分解温度提高了17℃而结晶温度下降。DMA结果表明,PP-g-MAH对MCC/PP-gMAH/r PP的玻璃化转变温度影响不明显,但是提高了储能模量和刚性。  相似文献   

7.
研究了5种熔体流动速率为28 g/10 min,乙烯质量分数为10%左右的车用抗冲共聚聚丙烯(IPC)的力学性能、相态结构、熔融结晶行为、橡胶相尺寸及分布、加工性能。结果表明:IPC-4整体力学性能最优,拉伸强度为24.60 MPa,弯曲模量为1 401.71 MPa,冲击强度为10.02 kJ/m~2;IPC是由无规共聚物、嵌段共聚物和均聚聚丙烯三部分组成;IPC-4具有最高的熔融焓和结晶焓,即材料有高的结晶度和刚性;IPC-4的孔洞分布更均匀、孔洞直径相差不大,平均值为1μm;5种试样的加工性能较为接近,最适宜的注塑温度为200℃。  相似文献   

8.
对酒钢千枚岩型废石进行超细粉磨、表面改性,通过双螺杆挤出制备废石/聚合物复合材料。结果表明,用干式球磨机球磨70 min,可制得粒度D_(90)为16.18μm的超细微粉;以铝酸酯偶联剂改性废石微粉,当质量分数为1.6%,改性温度110℃,改性时间30 min时,废石微粉活性指数达96.50%。红外光谱(FTIR)表明改性剂是以化学吸附的方式与废石微粉结合,说明偶联剂使废石达到了表面疏水改性的目的;扫面电镜(SEM)表明,改性后废石微粉能均匀分散到聚丙烯(PP)基体中。当改性废石微粉填充量为10 phr时,复合材料拉伸强度、冲击强度、弯曲强度和弯曲模量分别为:35.70 MPa、37.33 k J/m~2、36.92 MPa、832.10 MPa。  相似文献   

9.
采用硅烷偶联剂对纳米CaCO3进行表面改性,将表面改性CaCO3与热塑性弹性体(TPE)、聚丙烯(PP)熔融共混,制备了PP/TPE/表面改性CaCO3复合材料,表征并研究了其结构与性能。结果表明:加入表面改性CaCO3使复合材料的储能模量、损耗模量和复数黏度增加。表面改性CaCO3含量为6%(w)时复合材料的拉伸强度、弯曲强度和冲击强度均最大,分别为29.85 MPa,25.67 MPa,43.79 kJ/m2;与纯PP相比,复合材料的拉伸强度、弯曲强度和冲击强度分别提高了6.5%,11.5%,3.0%。表面改性CaCO3含量为10%(w)时,终止分解温度从466.9℃增加到473.7℃,分解速率最快时的温度从455.9℃增加到460.5℃,对体系的热解稳定性有一定的改善。  相似文献   

10.
采用木糖醇和3,4-二甲基苯甲醛为原料合成木糖醇类成核剂(DMDBX),并对所合成产品进行元素分析、红外光谱、核磁共振氢谱和碳谱表征及差热分析。结果表明,与结构上相似的Millad 3988和Millad NX8000对聚丙烯进行成核改性相比,成核剂添加量为0.2%时,空白聚丙烯和聚丙烯/DMDBX的雾度值分别为36.3%和17.6%,拉伸强度分别为34.90 MPa和36.90 MPa,维卡软化点分别为158.6℃和157.0℃。  相似文献   

11.
以聚丙烯树脂为基体,聚丙烯纤维织物为增强体,采用层压成型工艺制备了聚丙烯自增强复合材料层压板。研究了成型温度、成型压力、成型时间和纤维含量等工艺参数对聚丙烯自增强复合材料层压板拉伸和弯曲性能的影响规律,并采用差示扫描量热(DSC)仪和扫描电子显微镜(SEM)对其进行了热分析和形态结构的表征。结果表明,当成型温度为175℃,成型压力为10 MPa,成型时间为15 min,纤维含量为60%时,聚丙烯自增强复合材料层压板的力学性能达到最大值,其拉伸强度为(125.76±0.77)MPa,弯曲强度和弯曲弹性模量分别为(30.77±0.70)MPa和(1 795.46±75.95)MPa;从DSC图和SEM图观察到成型温度为175℃时聚丙烯纤维表面发生了熔融,有利于纤维和树脂之间的界面粘结力的增强。  相似文献   

12.
主要对三类玻纤增强聚丙烯材料GFPP-20、GFPP-35、GFPP-50进行研究,通过对挤出工艺、注塑工艺进行特定的优化使得材料力学性能有了明显提高,研究表明挤出速度250 r/min、挤出温度230℃、喂料速度40 r/min、注塑速度80%、注塑压力3 MPa、注塑温度230℃、螺杆背压0 MPa时,玻纤增强聚丙烯的性能最优。测试结果显示,GFPP-20的拉伸强度可达93 MPa、弯曲强度可达125 MPa,GFPP-35的拉伸强度可达123 MPa、弯曲强度可达169 MPa,GFPP-50的拉伸强度可达132 MPa、弯曲强度可达178 MPa。  相似文献   

13.
采用偶联剂对滑石粉进行表面改性,研究了γ―氨丙基三乙氧基硅烷(KH550)和正辛基三乙氧基硅烷(OTES)对成核剂/滑石粉增强聚丙烯体系力学性能和耐热性能的影响。发现采用预处理的方式,通过1%的偶联剂OTES对滑石粉表面进行改性,可以提高其与0.2%的成核剂在聚丙烯当中协同增刚作用。此时复合聚丙烯体系的弯曲模量、弯曲强度、拉伸强度、冲击强度和热变形温度分别达到2450MPa、57.9 MPa、39.6 MPa、56.5 J/m和121.5°C,较空白聚丙烯分别提高了70%、34%、10%、49%和36%。  相似文献   

14.
制备了无规共聚聚丙烯(PPR)/纳米TiO2复合材料,并研究了热处理对复合材料力学性能和断口形貌的影响。结果表明:使用4%(w)经硅铝复合包膜改性后的纳米TiO2可大幅提高PPR的力学性能,复合材料的拉伸强度由未改性的24.0 MPa提高到36.5 MPa,断裂伸长率由未改性的45%提高到90%;热处理可消除复合材料内部热应力,促进结晶的完善,有效改善PPR/纳米TiO2复合材料的拉伸性能及弯曲性能,热处理最佳温度为120℃,最佳时间为40 min,在此条件下,复合材料的拉伸强度及弯曲强度增幅分别达33.8%,35.9%。  相似文献   

15.
研究了偶联处理后的剑麻纤维(SF)对聚丙烯(PP)性能的影响,以马来酸酐接枝聚丙烯(PP-g-MAH)作为界面相容剂,制备了PP/SF/PP-g-MAH复合材料,考察了改性SF含量对PP/SF/PP-g-MAH复合材料流动性能、热性能、燃烧性能和力学性能的影响。结果表明,当SF含量由零增加到30%(质量分数,下同)时,PP/SF/PP-g-MAH复合材料的熔体流动速率降低了3.1g/10min,维卡软化温度升高了5.1℃,拉伸强度升高了6.0MPa,弯曲强度升高了20.7MPa,缺口冲击强度降低了3.1kJ/m~2,无缺口冲击强度降低了60kJ/m~2。  相似文献   

16.
采用凝胶色谱仪、升温淋洗分析仪、差示扫描量热仪以及X射线衍射仪对国产耐热聚丙烯H8020和2种进口耐热聚丙烯的结构进行表征,进一步采用熔体流动速率仪、万能材料试验机、摆锤冲击仪以及维卡热变形测定仪对性能进行测定。结果表明,H8020的弯曲强度为39.4 MPa、弯曲模量为1 820 MPa、拉伸强度为37.5 MPa、冲击强度为3.2 kJ/m2,具有良好的刚韧平衡性,热变形温度为115 ℃,维卡软化温度为158 ℃,综合性能达到甚至超过国外同类材料。  相似文献   

17.
郭万青 《塑料工业》2005,33(Z1):245-247
通过对催化剂的筛选、试验,成功地用单环管反应器生产出双向拉伸聚丙烯(BOpP)专用树脂.BOPP专用树脂的熔体质量流动速率为3.0 g/10min,等规指数为(96.0±0.5)%,拉伸屈服强度为32 MPa,悬臂梁冲击强度为34J/m,断裂伸长率为900%~910%,摩尔质量分布为5.0左右;在拉伸速率为250~280 m/min时,用其拉伸的薄膜均匀,极少破膜.  相似文献   

18.
根据片晶分离致孔的机理,利用羟基化改性聚丙烯(PPOH)与聚丙烯(PP)共混,通过熔融纺丝拉伸法制备具有一定亲水性的PP/PPOH中空纤维膜,探究了热处理温度及热拉伸温度对PP/PPOH中空纤维膜的结构与性能的影响。结果表明:当热处理温度为130℃时,PP/PPOH初纺中空纤维膜的结晶度高,力学性能较好,纯水通量为102.4 L/(m2·h);当热处理温度为130℃、热拉伸温度为130℃时,PP/PPOH中空纤维膜的结晶度最高,达39.4%,拉伸强度达93.1 MPa,表面微孔结构完善,纯水通量最高,达118.4 L/(m2·h)。  相似文献   

19.
采用二氧化碳釜压法制备高熔体流动速率的聚丙烯(PP)发泡材料,考察温度、处理时间和压力等工艺参数对PP发泡材料结构的影响,在此基础上,加入质量分数2%~8%的二氧化硅(SiO_2)、云母粉、长纤维玄武岩和ABS对PP发泡材料进行改性以增强其熔体流动速率。实验结果表明:单因素实验中达到泡孔直径最大的工艺条件分别为200℃、60 min和20 MPa;随着添加剂含量的增加,PP/SiO_2共混物料的熔融体强度减弱,比纯PP材料更低,PP/云母粉、PP/玄武岩纤维和PP/ABS共混物料的熔融强度比纯PP材料熔融体强度高。然而,PP/玄武岩纤维和PP/ABS共混发泡材料形成的气泡均匀性和稳定性较差,故四种添加剂中云母粉是最有效的改性剂,最佳含量为2%。  相似文献   

20.
通过添加聚苯乙烯(PS)、热塑性弹性体苯乙烯-丁二烯-苯乙烯共聚物(SBS),以改善聚丙烯(PP)的性能。先采用熔融法制备PP/PS共混物,在确定PP,PS最佳配比的基础上,再添加SBS制备PP/PS/SBS共混物,确定了PP,PS及SBS的最佳配比。研究了PP/PS,PP/PS/SBS共混物的力学性能、热性能及熔体流动行为。结果表明,当PP与PS的质量比为70∶30时,PP/PS共混物的性能最好,其拉伸强度为28.5 MPa,拉伸弹性模量为1 214 MPa,弯曲弹性模量为1 752 MPa,冲击强度为14.0 kJ/m2,断裂应变为130%,维卡软化温度为143.9℃。当PP,PS及SBS的质量比为70∶30∶10时,PP/PS/SBS共混物的性能最好,其拉伸强度为23.2 MPa,拉伸弹性模量1 040 MPa,断裂应变为260%,冲击强度为18.0 kJ/m2,弯曲强度为36.5 MPa,弯曲弹性模量为1 297 MPa,定挠度弯曲应力为36.1 MPa,弯曲破坏应力为36.5 MPa,熔体流动速率为8.94 g/(10 min),维卡软化温度为139.0℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号