首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amount of wood residue is used as a measurement of the extent of wood liquefaction. Characterization of the residue from wood liquefaction provides a new approach to understand some fundamental aspects of the liquefaction reaction. Residues were characterized by wet chemical analyses, Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), and scanning electron microscopy (SEM). The Klason lignin content of the residues decreased, while the holocellulose and α‐cellulose contents increased as the phenol to wood ratio (P/W) increased. A peak at 1735 cm?1, which was attributed to the ester carbonyl group in xylan, disappeared in the FTIR spectra of the residues from liquefied wood under a sealed reaction system, indicating significantly different effects of atmospheric versus sealed liquefaction. The crystallinity index of the residues was higher than that of the untreated wood particles and slightly increased with an increase in the P/W ratio. The SEM images of the residues showed that the fiber bundles were reduced to small‐sized bundles or even single fibers as the P/W ratio increased from 1/1 to 3/1, which indicated that the lignin in the middle lamella had been dissolved prior to the cellulose during liquefaction. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

2.
Three polyurethane resins were synthesized from liquefied wood and three diisocyanates, i.e., TDI, IPDI, and HDI. The liquefied wood was obtained by the liquefaction of benzylated wood wastes using Dibasic esters (DBE) as solvent with hydrochloric acid as catalyst for 3 h, at 80°C. The thermal stability and microphase morphology of polyurethane films were investigated by TG, DSC, WAXD, and SEM methods. The experimental results indicated that polyurethane resins from liquefied wood had higher thermal stability than traditional ones, and the special structure and the difference of chemical structure of diisocyanates resulted in the crytallinity and microphase separation of obtained polyurethanes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 351–356, 2004  相似文献   

3.
Chinese eucalyptus was subjected to a liquefaction process using glycerol/ethylene glycol (EG) as liquefaction solvent. The effects of various liquefaction conditions, including reaction time, liquefaction temperature, acid concentration, and liquor ratio on the chemical composition of liquefied wood residues were studied. The results showed that the whole liquefaction process took place in two stages, the liquefaction yield of wood depended on the reaction temperature, acid concentration and liquor ratio. With increased acid concentration the liquefaction yield, acid‐insoluble lignin, and hemicellulose content of the residues were increased, and the relative content of cellulose was decreased. Fourier transform infrared (FT‐IR) analyses of the residues showed that hemicellulose and lignin were almost decomposed at the initial stages of reaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Wood liquefaction was conducted at a 2/1 phenol/wood ratio in two different reactors: (1) an atmospheric three‐necked flask reactor and (2) a sealed Parr reactor. The liquefied wood mixture (liquefied wood, unreacted phenol, and wood residue) was further condensed with formaldehyde under acidic conditions to synthesize two novolac‐type liquefied wood/phenol/formaldehyde (LWPF) resins: LWPF1 (the atmospheric reactor) and LWPF2 (the sealed reactor). The LWPF1 resin had a higher solid content and higher molecular weight than the LWPF2 resin. The cure kinetic mechanisms of the LWPF resins were investigated with dynamic and isothermal differential scanning calorimetry (DSC). The isothermal DSC data indicated that the cure reactions of both resins followed an autocatalytic mechanism. The activation energies of the liquefied wood resins were close to that of a reported lignin–phenol–formaldehyde resin but were higher than that of a typical phenol formaldehyde resin. The two liquefied wood resins followed similar cure kinetics; however, the LWPF1 resin had a higher activation energy for rate constant k1 and a lower activation energy for rate constant k2 than LWPF2. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Red pine wood, Pinus densiflora, biomass was liquefied through liquefaction using a solvent mixture of crude glycerol and PEG-400 with a sulfuric acid catalyst. The liquefaction process parameters of crude glycerol/PEG-400 blending ratio, biomass loading, acid loading, reaction temperature, and reaction time were optimized. Biopolyol with 61.9% biomass conversion was produced at 170°C within 1 h using a co-solvent of crude glycerol and PEG-400 (5/5, w/w), 15% biomass loading, and 3% sulfuric acid loading. The biopolyol possessed a 4.2 mg KOH/g acid number and 892.4 mg KOH/g hydroxyl number. Polyurethane foam was successfully synthesized from the liquefied red pine wood biomass with toluene diisocyanate. The synthesis of biopolyurethane derived from red pine wood biopolyol was confirmed with FT-IR.  相似文献   

6.
By means of gel permeation chromatography analysis, the molecular weights and molecular weight distributions of liquefied wood obtained under various liquefaction conditions and species of catalysts were investigated in order to trace the change in the structural characteristics of the liquefied wood. The results indicated that during the liquefaction reaction, wood components were subjected to decomposition, phenolation, and recondensation. The intensities of these reactions depended greatly on the reaction conditions and the species of catalysts, and their competing result determined the structural characteristics of the resulting liquefied wood. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 351–357, 1997  相似文献   

7.
The liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the obtained liquefied wood were investigated. It was found that phosphoric acid is a satisfactory catalyst for liquefying wood. The amount of phenol that reacts with the liquefied wood components (i.e., combined phenol) increases with an increase in liquefaction temperature, liquefaction time, catalyst content, or liquid ratio. By removing the free phenol, the resulting liquefied woods become novolaclike resins. The measurements of the flow properties of these liquefied woods reveal that the melts of liquefied woods behave as pseudoplastics and their flows obey the Ostwald de Waele power law equation. The amount of combined phenol within the liquefied wood and the presence of filler in the liquefied wood have great influence on their flow properties. The flowing temperature, activation energy, and zero shear viscosity of the liquefied woods show tendencies to increase with an increase in combined phenol. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
木质材料经过热化学液化,可进一步制备酚醛树脂、聚氨酯等高分子材料。本文介绍了木材液化技术制备高分子材料的发展状况,包括液化方法、木材主成分的液化机理以及液化生成物的应用,指出在木材液化反应机理、液化产物的利用和最佳液化工艺的开发等方面尚有待进一步研究,并提出充分利用木材的生物降解性,开发木材液化物与其他材料复合的新型高分子材料具有广泛的前景。  相似文献   

9.
The limited availability of fossil resource is causing the urgent need to get renewable chemicals. Solvent liquefaction can convert rice husk into bio‐based chemicals. Rice husk was liquefied in polyhydric alcohol catalyzed by sulfuric acid under atmospheric pressure. The viscosity, residue content, and weight average molecular weight (Mw) of liquefied rice husk were 3089 cps, 23.6% and 4100, respectively. Prolonging the liquefaction time decreased the residue content and increased the average molecular weight. Polyurethane (PU) foams were successfully prepared from the liquefied rice husk with different molar ratios of NCO to OH (NCO/OH). The mechanical properties of PU foams showed that the compressive strength in the vertical direction is higher than that in the horizontal direction. With Increase of the NCO/OH molar ratio from 1.0 to 2.0, compressive strength in the vertical direction of PU foams increased from 70.6 to 114.7 kPa at 10% strain. Thermal analysis results showed that thermal stability of liquefied rice husk‐based PU resins was better than that of fossil‐ and liquefied wood‐ based PU resins. Increasing the NCO/OH molar ratio and inorganic residue of rice husk can help to increase thermal stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45910.  相似文献   

10.
Wood lignin contains significant amounts of acid-labile aryl ether units, which play a significant role in lignin modification or delignification processes. We have evaluated the rate and reaction kinetics on the acid-catalyzed cleavages of aryl ether structures for wood lignin in situ based on the formation of phenolic hydroxyl groups. The content of acid-labile aryl ether units was quite uniform for a variety of softwood wood lignins (~4% per C9 unit) and it varied appreciably among hardwood species, ranging from 4% for aspen to 9% for beech wood lignin. These variations, however, appear to be related to the content of syringyl units in wood lignin. The reactivity of these reactive aryl ether structures was noticeably higher for the spruce than for the aspen wood lignin. This difference in reactivity, based on the behavior of lignin model compound reactions, can be attributed to the influence of syringyl moieties in aspen wood lignin. It appears that most of the acid-labile aryl ether units in hardwood were associated with the syringy moiety being present as a benzyl unit, which is much less reactive than the corresponding guaiacyl moiety.  相似文献   

11.
Preparation of polyurethane wood coatings based on copper‐, chromium‐, and boron (CCB) containing liquefied wood was performed, as an alternative way to manage postconsumed preservative‐contaminated wood. Additionally, we examined the possibility of improvement of selected properties of the liquefied wood‐based coatings by an addition of silica nanoparticles. The constituents of the CCB wood preservative do not exhibit an influence on a liquefaction process and on composition of the liquefied mixture. CCB also does not affect curing of the formulations containing liquefied wood and an isocyanate‐type hardener. Furthermore, influence of CCB on adhesion strength of liquefied wood‐based coatings on a wooden substrate, their hardness, and resistance to scratching and to water, acetone, and alcohol, is not exhibited. However, apart from these, from the applicative point of view, positive results, any improvement of the coating properties by the addition of silica nanoparticles is not shown. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40865.  相似文献   

12.
Sugi (Criptmeria Japonica) wood meal was liquefied at 150°C with a mixture of poly(ethylene glycol) 400 and glycerin in the presence of a sulfuric acid catalyst. The resulting liquefaction products were used directly to prepare isocyanate adhesives via mixing with polymeric diphenylmethane diisocyanate without the removal of the residue. The properties of the liquefaction products and the performances of bonded plywood were tested. The results showed that the residue content decreased and the hydroxyl value increased as the reaction time increased. The viscosity and weight‐average molecular weight significantly changed with the reaction time. All the dry test results of the shear strength met the Japanese Agricultural Standard (JAS) criteria for plywood. After a cyclic steaming treatment, however, only the plywood bonding with adhesives from the liquefied wood with a reaction time of 1.5 h satisfied the JAS criteria. The wood failure was very low. The emissions of formaldehyde and acetaldehyde were extremely low. Liquefied‐wood‐based isocyanate adhesives have the potential to become ideal wood adhesives because of their bond durability, safety, and recyclability.  相似文献   

13.
木材溶剂液化技术及其在制备高分子材料中的应用   总被引:3,自引:0,他引:3  
木质材料经过热化学液化,可进一步制备酚醛树脂、聚氨酯等高分子材料.本文介绍了木材液化技术制备高分子材料的发展状况,包括液化方法、木材主成分的液化机理以及液化生成物的应用,指出在木材液化反应机理、液化产物的利用和最佳液化工艺的开发等方面尚有待进一步研究,并提出充分利用木材的生物降解性,开发木材液化物与其他材料复合的新型高分子材料具有广泛的前景.  相似文献   

14.
Lignin of high purity can be separated from black liquor using the LignoBoost process, of which the overall efficiency is largely dependent on the precipitation yield of lignin, which depends on the properties of black liquor and process conditions. In this paper, the influences of process conditions on the precipitation yield of lignin from mixed hardwood/softwood black liquor were investigated. The Klason and standard UV method were used to determine lignin concentration. The chemical and structural properties of lignin were also analyzed. The results showed that the precipitation yield of lignin increased along with a decrease in pH and temperature, or with an increase in the ion strength of black liquor, and the yield was lower when mixed softwood/hardwood black liquor was used. It also showed that at a higher precipitation yield the precipitated lignin had a lower average molecular weight but had higher methoxyl and phenolic hydroxyl content.  相似文献   

15.
Liquefaction of waste paper (WP) was performed in the presence of phenol with an acid catalyst. Newspaper (NP) was liquefied more easily than box paper (BP) or business paper (BNP). Differences in the degree of liquefaction were due to different chemical compositions. That is, NP had a relatively high lignin content, which is known to be easily liquefied, whereas BP and BNP were mainly composed of cellulose with a crystalline structure, which is difficult to liquefy. The acid concentration and phenol/WP ratio were more important factors in the regulation of liquefaction than reaction temperature. The changes in the apparent molecular weight depending on the reaction time were more significant for phenolated NP, with high lignin content, than for phenolated BP. The obtained phenolated products showed thermal flow properties and reactivity as good as those of phenolated wood and commercial Novolak resin. Thermosetting moldings were obtained from phenolated products, and their flexural properties and thermal stability were comparable to those of phenolated wood and commercial Novolak resin. Flexural properties were further improved by the cocondensation reaction between the unreacted phenol of phenolated products and formaldehyde. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1473–1481, 2002  相似文献   

16.
Arrhenius kinetic parameters have been determined for the CO2 gasification of chars (heat treatment at 1000 °C) prepared from well-characterized samples of a hardwood, a softwood and a Montana lignite. The effects of pre-pyrolysis addition of inorganic salts of the alkali, alkaline earth and transition metal groups to the wood samples have also been determined. The reactivities of the chars of the cottonwood and lignite samples exceeded that of Douglas fir char by a factor of four to seven between 700 and 900 °C. The reactivity of the wood char was related to the inorganic content of the sample. There was very little difference in the reactivity of chars prepared from the hardwood and the softwood after treatment with similar quantities of inorganic salts. The inorganic content of the lignite char was more than five times greater than that of cottonwood char, but its reactivity was similar. The carbonates of sodium and potassium were equally effective gasification catalysts. The transition metal salts were the most effective catalysts initially, but they lost their activity well before the gasification was complete. The data indicate that treatment of wood with aqueous salts results in replacement of some of the natural minerals by ion exchange, and that these exchangeable ions play a major role in controlling reactivity of the chars.  相似文献   

17.
生物质化学组分及其液化残渣的热重行为   总被引:1,自引:0,他引:1  
分别对木粉主要组分(纤维素、半纤维素和木质素)及其在相同液化条件下的液化残渣的热重行为进行了研究。热重实验结果表明,木粉主要组分的热稳定性为:木质素 > 纤维素 > 半纤维素。木粉的热解过程可以认为是这3种主要组分热解行为的综合:木质素的热解比较缓慢,热解温度区间最宽,主要失重温度为250~630 ℃;而纤维素和半纤维素的主要热解温度分别为332~383 ℃和236~333 ℃。在液化反应过程中,木粉主要组分发生降解从易到难的顺序为:木质素 > 半纤维素 > 纤维素。在木粉的液化过程中,快速液化阶段主要与半纤维素和木质素有关,而液化残渣率的高低主要与纤维素液化程度有关。  相似文献   

18.
In this study, lodgepole pine (Pinus contorta Dougl.) bark infested by the mountain pine beetles (Dendroctonus ponderosae hopkins) was liquefied using either polyethylene glycol (PEG) or polyethylene glycol/glycerol (PEG/G) as the solvent. It was found that the addition of glycerol to PEG reduced the residue ratio during bark liquefaction. The liquefied bark fraction obtained by using PEG/G had a slightly higher hydroxyl number than that obtained by using PEG. The residue from PEG/G liquefaction contained less lignin and more cellulose than the residue from PEG liquefaction. Various polyurethane foams containing liquefied bark fractions were made, and it was found that the weight ratios of liquefied bark to pMDI used in foam formulation and bark liquefaction solvents affected the density, gel content, thermal stability, mechanical properties, and the cell structure of the resulting foams. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
—The mechanical properties of polystyrene filled with chemithermomechanical pulp and wood residues of softwood and hardwood species, which were precoated with phthalic anhydride and various polymers, e.g. polystyrene and PVC, have been investigated. The extent of improvement in the mechanical properties of the composite materials depends on the coating composition, the concentration of phthalic anhydride, the nature of the coated polymers, as well as the concentration of fiber, the nature of the wood species, and the nature of the pulps. Experimental results indicate that phthalic anhydride acts as a coupling agent, but when its performance was compared to that of poly[methylene (polyphenyl isocynate)], it seemed inferior to the latter.  相似文献   

20.
竹材酚醇液化及其甲醛树脂的FT-IR分析   总被引:2,自引:1,他引:1  
采用傅立叶红外光谱法分析了竹刨花在苯酚与聚乙二醇-400溶剂作用下酸催化液化产物的化学结构,以及液化物甲醛树脂的结构特征。分析表明:在液化过程中木质素、纤维素和半纤维素都发生了不同程度的降解,产生了很多的小分子物质;并且同时加入两种液化试剂,可以使竹刨花发生两种不同的液化反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号