首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous poly(amide‐imide) nanofibers were fabricated using a novel electrospinning method with rotating and re‐collecting cylindrical collectors. The nanofilaments were modified using various post‐treatments, i.e. glycerol treatment and thermal imidization under tension, for possible application as high‐performance reinforcements. Morphological and mechanical properties of continuous poly(amide‐imide) nanofibers prepared by the electrospinning process and various post‐treatments were measured. Severe adhesion between individual nanofibers within fiber bundles was inhibited through surface treatment of the electrospun nanofiber bundles by spraying with glycerol. The morphological and mechanical properties of the continuous poly(amide‐imide) nanofibers and thermal stability were improved using thermal imidization at high temperature under tension. The morphological and mechanical properties of the continuous electrospun nanofibers were improved significantly by post‐treatments after electrospinning because uniform and complete thermal imidization occurred through the core region of the nanofibers. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Poly(amide‐imide)s (PAI) bearing azobenzene chromophore groups were prepared by allowing a hydroxyl‐containing azobenzene dye (Disperse Red 1) to react with and reactive‐terminated PAI with weight–average molecular weights ranging from ~ 1.2 to 2.0 × 104 g/mol. Such PAI were prepared by the condensation of trimellitic anhydride (TMA) and 4,4′‐methylene diphenyl diisocyanate (MDI). The final polymers presented a deep red color, with an absorption maxima in N,N‐dimethylformamide (DMF) solution at 490 nm, close to the azobenzene reactant used (Disperse Red 1) and molecular weights slightly higher than the pristine polymer, showing that the azo chromophore incorporation reaction does not lead to side reactions. The azofunctionalized polymer presented a high Tg value (170°C) that could be increased by a thermal curing process to 240°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 841–847, 2007  相似文献   

3.
Poly(amide‐imide), PI, hybrid films are prepared by using sol–gel techniques. First, the poly(amide amic acid) with controlled block chain length of 5000 and 10,000 g/mol and uncontrolled chain length are synthesized by condensation reaction with 4,4′‐diaminodiphenyl ether (ODA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), trimellitic anhydride chloride (TMAC) and terminated with p‐aminopropyltrimethoxysilane (APrTMOS). And then the imidization reactions of poly (amide amic acid) are proceeded to obtain the poly (amide‐imide) hybrid film. Hybrid films with 5000 g/mol block chain length possess higher storage modulus, lower glass transition temperature and damping intensity comparing to films with 10,000 g/mol block chain length. The addition of TMAC to the poly(amide‐imide) hybrids is due to the increase of toughness and intermolecular hydrogen bonding, which is the average strength of intermolecular bonding and studied by the hydrogen‐bonded fraction (fbonded), frequency difference (Δν) and shiftment. Meanwhile, PI hybrid films containing more APrTMOS and TMAC content possess higher thermal and mechanical properties. On the other hand, hybrid films with 10,000 g/mol block chain length and more TMAC content have higher gas permeabilities than other films. The degradation temperatures of 5 wt % loss of all hybrid films are all higher than 540°C and increased as the increase of TMAC content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The study on perchlorate removal from simulated wastewater was carried out using a conducting copolymer poly(aniline‐co‐o‐aminophenol) (PANOA) polymerized on multiwalled carbon nanotubes (MWNTs)‐modified glassy carbon (GC) electrode. The cyclic voltammograms demonstrated that the PANOA/MWNTs GC electrode in a NaCl solution containing NaClO4 had a good redox activity, reversibility, and stability in a wide range of pHs tested (from pH <1 to 9.0). The ratio of ClO/Cl? in PANOA/MWNTs was up to 80.8%, which was 10.0% in the solution, indicating that PANOA/MWNTs had a relatively high affinity to perchlorate. The result of X‐ray photoelectron spectroscopy revealed a fact that Cl? ions can be strongly adsorbed on MWNTs, which resulted in an improvement in the electrical activity of PANOA and perchlorate removal. Therefore, it is possible to develop a green process for removing perchlorate from wastewater using PANOA/MWNTs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The imidization of poly(styrene‐co‐maleic anhydride) with amines may improve some of its end‐use properties. The objective of this study was to examine the mechanism and kinetics with aniline (ANL) as an amine of the preparation of poly(styrene‐coN‐phenyl maleimide). The reaction was carried out in a tetrahydrofuran solution at 25–55°C and in an ethylbenzene solution at 85–120°C. The extent of the reaction was determined by conductance titration, a new and simple method. Two consecutive reactions were involved in the imidization: ring opening to produce an acido‐amide group and ring closing to form a corresponding imide group. The imidization rate was greatly influenced by the reaction temperature and the molar ratio of ANL to the anhydride. A model for the imidization kinetics over a wide range of reaction temperatures and concentration ranges was developed and validated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2744–2749, 2006  相似文献   

6.
In the present study, new functional poly(amide‐imide)/organoclay nanocomposite films were successfully fabricated through the solution intercalation technique. New poly(amide‐imide) (PAI) containing glycine was synthesized via solution polycondensation of 1,1',3,3'‐tetraoxo(5,5'‐biisoindoline‐2,2'‐diyl)diacetic acid with 4,4′‐diaminodiphenylsulfone. The synthesized PAI was characterized by 1H NMR, Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography, elemental analysis and inherent viscosity. Then, PAI/organoclay nanocomposite films containing 4 and 8 wt% of organoclay were prepared via solution intercalation through blending of organoclay 30B with the PAI solution. The nanostructures and properties of the PAI/organoclay were investigated using FTIR spectroscopy, XRD, transmission electron microscopy (TEM), TGA, DSC and microscale combustion calorimetry. XRD and TEM revealed the good dispersion of organoclay in the polymer matrix. TGA indicated that the addition of organoclay into the PAI matrix increases the thermal decomposition temperatures and char yields of the nanocomposites. Organoclay shows a positive effect in improving the flame retardancy of the PAI, reflecting the decrease in heat release rate, the total heat release and the heat release capacity of the PAI nanocomposites, while the thermal stability of the PAI nanocomposites only increased slightly compared with the neat polymer. © 2013 Society of Chemical Industry  相似文献   

7.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 2,5‐bis(trimellitimido)chlorobenzene (I) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.76–1.42 dL g−1. The diimide‐diacid monomer (I) was prepared from 2‐chloro‐p‐phenylenediamine with trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Their cast films had tensile strengths ranging from 74 to 95 MPa, elongations at break from 7 to 11%, and initial moduli from 1.38 to 3.25 GPa. The glass transition temperatures of these polymers were in the range of 233°–260°C, and the 10% weight loss temperatures were above 450°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1691–1701, 1999  相似文献   

8.
A novel antistatic agent poly(ether‐ester‐amide) (PEEA) based on caprolactam, polyethylene glycol, and 6‐aminocaproic acid was successfully synthesized by melting polycondensation. The structure, thermal properties, and antistatic ability of the copolymer were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analyses, and ZC36 megohmmeter. Test results show that PEEA is a block copolymer with a melting point of 217°C and a thermal decomposition temperature of 409°C, together with a surface resistivity of 108 Ω/sq. Antistatic poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) materials were prepared by blending different content of PEEA to ABS resin. The antistatic performances, morphology, and mechanical properties were investigated. It is indicated that the surface resistivity of PEEA/ABS blends decrease with the increasing PEEA content, and the excellent antistatic performance is obtained when the antistatic agent is up to 10–15%. The antistatic performance is hardly influenced by water‐washing and relative humidity, and a permanent antistatic performance is available. The antistatic mechanism is investigated. The compatibility of the blends was studied by scanning electron microscopy images. The ladder distribution of antistatic agent is formed, and a rich phase of antistatic agent can be found in the surface layer. The elongations at break of the blend are improved with the increasing antistatic agent; the tensile strength and the notched impact strength kept almost the same. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

9.
The imidization of poly(styrene‐co‐maleic anhydride) (SMA) was conducted, and the glass‐transition temperatures (Tg's) of the resulting products were measured with differential scanning calorimetry. The contributions from functional groups of maleic anhydride, N‐phenylmaleamic acid, and N‐phenylmaleimide to Tg were examined. Tg increased in the order of SMA < styrene–N‐phenyl maleimide copolymer < styrene–N‐phenyl maleamic acid copolymer and followed the Fox equation. Tg of the imidized products of SMA could be controlled by the conversions of both ring‐opening and ring‐closing reactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2418–2422, 2007  相似文献   

10.
Immobilization of ascorbate oxidase (AO) in poly(3,4‐ethylenedioxythiophene) (PEDOT)/multiwalled carbon nanotubes (MWCNTs) composite films was achieved by one‐step electrochemical polymerization. The PEDOT/MWCNTs/AO modified electrode was fabricated by the entrapment of enzyme in conducting matrices during electrochemical polymerization. The PEDOT/MWCNTs modified electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The experimental results showed that the composite films exhibited better mechanical integrity, electrochemical activity, higher electronic and ionic conductivity, and larger redox capacitance compared with pure PEDOT films, which would be beneficial to the fabrication of PEDOT/MWCNTs/AO electrochemical biosensors. The scanning electron microscopy studies revealed that MWCNTs served as backbone for 3,4‐ethylenedioxythiophene (EDOT) electropolymerization. Furthermore, the resulting enzyme electrode could be used to determine L ‐ascorbic acid successfully, which demonstrated the good bioelectrochemical catalytic activity of the immobilized AO. The results indicated that the PEDOT/MWCNTs composite are a good candidate material for the immobilization of AO in the fabrication of enzyme‐based biosensor. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Molecular simulations have been used to study the sorption and diffusion properties of carbon dioxide in a series of poly (amide‐imide) (PAI) membranes containing oligo(tetrafluoroethene) segment with various numbers (n = 0, 1, 2, 3, and 4) of tetrafluoroethene units. The solubility and self‐diffusion coefficients were computed by the Grand Canonical Monte Carlo (GCMC) method and molecular dynamics (MD) simulations respectively. It was found that increasing the fluorine content of the polymer membrane reduced the associated glass transition temperature (Tg) and led to an increase in diffusion coefficient of carbon dioxide. Results indicate that penetrant molecule's diffusion coefficient is strongly dependent on chain mobility. It is also noticed that the radial distribution functions (RDFs) are inconsistent with the d‐spacings of PAIs calculated form X‐ray data. This is also thought to be tied to the number of degrees of freedom of the chain. Finally, this study gives a useful insight into how PAIs with high fluorine content can be tailored with a high permeability to carbon dioxide. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
An imide ring‐performed dicarboxylic acid bearing one hexafluoroisopropylidene and two ether linkages between aromatic rings, 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane (II), was prepared from the condensation of 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane and trimellitic anhydride. A novel series of poly(amide‐imide)s having inherent viscosities of 0.72 ∼ 1.86 dL g−1 was prepared by the triphenyl phosphite‐activated polycondensation from the diimide‐diacid (II) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. Several of the resulting polymers were soluble in polar amide solvents, and their solutions could be cast into transparent, thin, flexible films having good tensile properties and high thermal stability. The 10% weight loss temperatures were all above 495°C in air or nitrogen atmosphere, and the glass transition temperatures were in the range of 237°–276°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 823–831, 1999  相似文献   

13.
One of the major problems of nanofiber scaffold or other devices like cardiovascular or blood‐contacting medical devices is their weak mechanical properties and the lack of hemocompatibility of their surfaces. In this study, halloysite nanotubes (HNTs) and carbon nanotubes (CNTs) were incorporated within poly(lactic‐co‐glycolic acid) (PLGA) nanofibers and the mechanical property and hemocompatibility of both types of composite nanofibers with different doping levels were thoroughly investigated. The morphology and internal distribution of the doped nanotubes within the nanofibers were characterized using scanning electron microscopy and transmission electron microscopy. Mechanical properties of the electrospun nanofibers were tested using a material testing machine. The hemocompatibility of the composite nanofibers was examined through hemolytic and anticoagulant assay, respectively. We show that the doped HNTs or CNTs are distributed in the nanofibers with a coaxial manner and the incorporation of HNTs or CNTs does not significantly change the morphology of the PLGA nanofibers. Importantly, the incorporation of HNTs or CNTs within PLGA nanofibers significantly improves the mechanical property of PLGA nanofibers, and PLGA nanofibers with or without doping of the HNTs and CNTs display good anticoagulant property and negligible hemolytic effect to human red blood cells. With the enhanced mechanical property, great hemocompatibility, and previously demonstrated biocompatibility of both HNTs‐ and CNTs‐doped composite PLGA nanofibers, these composite nanofibers may be used as therapeutic artificial tissue/organ substitutes for tissue engineering applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Improving properties of polyurethane (PU) elastomers have drawn much attention. To extend the properties of the modified PU composite, here a new method via the reaction of poly(urethane‐imide) diacid (PUI) and silane‐modified epoxy resin (diglycidyl ether of bisphenol A) was developed to prepare crosslinked poly (urethane‐ imide)/epoxy/silica (PUI/epoxy/SiO2) hybrids with enhanced thermal stability. PUI was synthesized from the reaction of trimellitic anhydride with isocyanate‐terminated PU prepolymer, which was prepared from reaction of polytetramethylene ether glycol and 4,4′‐diphenylmethane diisocyanate. Thermal and mechanical properties of the PUI/epoxy/SiO2 hybrids were investigated to study the effect of incorporating in situ SiO2 from silane‐modified epoxy resin. All experimental data indicated that the properties of PUI/epoxy/SiO2 hybrids, such as thermal stability, mechanical properties, were improved due to the existence of epoxy resin and SiO2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The synthesis and thermal properties of thermoplastic poly(urethane‐imide) (PUI) resins were studied. Model reaction studies on the reactions of 4,4′‐diphenylcarbamatodiphenylmethane and 4,4′‐diisocyanatodiphenylmethane with phthalic anhydride were performed. We found that the reaction of anhydrides with urethane groups could take place under certain reaction conditions. According to the model reaction studies, N‐2‐methyl‐pyrrolidone was employed as a solvent, and no catalyst was used in the polymerization. To restrain the side reaction of anhydrides with urethane groups, we adopted a two‐step chain‐extending procedure in a chain‐extending reaction. The inherent viscosity of PUI was 0.83–0.99 dL/g. The prepared polymers not only exhibited improved solubility in organic solvents but also formed flexible films. Thermogravimetric analysis showed that PUI exhibited a two‐step thermal weight‐loss pattern. The first step of the thermal degradation of PUI was attributed to the thermooxidizing cleavage of weak and labile linkage, such as urethane groups, isopropylidene, and methylene, except for imide rings. The polymer inherent viscosity decreased sharply during the first step of thermal degradation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 773–781, 2001  相似文献   

16.
Carbon nanotube/poly(p‐phenylene benzobisoxazole) (CNT/PBO) composite fibres were prepared by in situ polymerization and dry‐jet wet spinning. The structure and properties of the CNT/PBO fibres were investigated. FTIR and viscosity measurements showed that the functional groups on the CNT surface took part in the polymerization and affected the chemical structure and molecular weight of the composite. CNT/PBO composites with high molecular weight could be obtained by controlling the amount and addition time of CNTs. Compared with PBO fibres containing no CNTs prepared under the same conditions, the thermal resistance of the CNT (2 wt%)/PBO fibres was higher and the tensile strength was also improved by 20–50%. WAXD and SEM measurements indicated that the orientation degree of the CNT (2 wt%)/PBO fibres was smaller than that of PBO fibres. The fracture surfaces of these two fibres were also different. CNT dispersion in the CNT (2 wt%)/PBO fibres was examined by TEM. A model of the interactions between CNTs and PBO is proposed, based on these results. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

18.
4,4′‐(Hexafluoroisopropylidene)‐bis‐(phthalic anhydride) (1) was reacted with L ‐leucine (2) in toluene solution at refluxing temperature in the presence of triethylamine and the resulting imide‐acid (4) was obtained in quantitative yield. The compound (4) was converted to the diacid chloride (5) by reaction with thionyl chloride. The polymerization reaction of the imide‐acid chloride (5) with 1,6‐hexamethylenediamine (6a) , benzidine (6b) , 4,4′‐diaminodiphenylmethane (6c) , 1,5‐diaminoanthraquinone (6d) , 4,4′‐sulfonyldianiline (6e) , 3,3′‐diaminobenzophenone (6f) , p‐phenylenediamine (6g) and 2,6‐diaminopyridine (6h) was carried out in chloroform/DMAc solution. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of those optically active poly(amide‐imide)s are reported. © 1999 Society of Chemical Industry  相似文献   

19.
Differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and dynamic mechanical analysis (DMA) properties of poly(lactic acid)/ poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) specimens suggest that only small amounts of poor PLA and/or PBAT crystals are present in their corresponding melt crystallized specimens. In fact, the percentage crystallinity, peak melting temperature and onset re‐crystallization temperature values of PLA/PBAT specimens reduce gradually as their PBAT contents increase. However, the glass transition temperatures of PLA molecules found by DSC and DMA analysis reduce to the minimum value as the PBAT contents of PLAxPBATy specimens reach 2.5 wt %. Further morphological and DMA analysis of PLA/PBAT specimens reveal that PBAT molecules are miscible with PLA molecules at PBAT contents equal to or less than 2.5 wt %, since no distinguished phase‐separated PBAT droplets and tan δ transitions were found on fracture surfaces and tan δ curves of PLA/PBAT specimens, respectively. In contrast to PLA, the PBAT specimen exhibits highly deformable properties. After blending proper amounts of PBAT in PLA, the inherent brittle deformation behavior of PLA was successfully improved. Possible reasons accounting for these interesting crystallization, compatible and tensile properties of PLA/PBAT specimens are proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Poly(ethylene terephthalate)/multiwalled carbon nanotubes (PET/MWCNTs) with different MWCNTs loadings have been prepared by in situ polymerization of ethylene glycol (EG) containing dispersed MWCNTs and terephthalic acid (TPA). From scanning electronic microscopy images of nanocomposites, it can be clearly seen that the PET/MWCNTs composites with low‐MWCNTs contents (0.2 and 0.4 wt %) get better MWCNTs dispersion than analogous with high‐tube loadings (0.6 and 0.8 wt %). The nonisothermal crystallization kinetics was analyzed by differential scanning calorimetry using Mo kinetics equation, and the results showed that the incorporation of MWCNTs accelerates the crystallization process obviously. Mechanical testing shows that, in comparison with neat PET, the Young's modulus and the yield strength of the PET nanocomposites with incorporating 0.4 wt % MWCNTs are effectively improved by about 25% and 15%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号