首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以自制GO(氧化石墨烯)作为BCE(双酚A型氰酸酯)的改性剂制备相应的改性树脂。采用非等温DSC(差示扫描量热)法、Kissinger法、Crane法和升温速率-温度(β-T)外推法研究了GO对BCE固化动力学的影响,确定了纯BCE和GO/BCE体系的固化工艺条件和动力学参数。结果表明:纯BCE体系的凝胶温度为180.0℃、固化温度为201.0℃和后处理温度为221.1℃;GO/BCE体系的凝胶温度为158.8℃、固化温度为195.7℃和后处理温度为214.3℃;纯BCE和GO/BCE固化体系的活化能分别为102.38 kJ/mol和81.68 kJ/mol,反应级数分别为0.93和0.91。  相似文献   

2.
采用Ozawa方法和Kissinger方法研究了环氧树脂和双环戊二烯双酚型氰酸酯树脂(DCPDCE)共聚体系的固化动力学,并计算了活化能、指前因子、不同温度下的反应速率常数和共聚物的总反应级数。研究结果表明,体系中加入环氧树脂后,提高了体系的反应活化能,明显降低了室温时的反应速率常数,而对固化温度(180℃)时的反应速率常数影响不大。不同环氧树脂含量的共聚体系固化反应级数均接近1级反应。  相似文献   

3.
Microcapsules containing a curing agent, 2‐phenyl imidazole (2PZ), for a diglycidyl ether of bisphenol A (DGEBA) epoxy resin were prepared by a solid‐in‐oil‐in‐water emulsion solvent evaporation technique with poly(methyl methacrylate) (PMMA) as a polymeric wall. The mean particle size of the microcapsules and the concentration of 2PZ were about 10 μm and nearly 10 wt %, respectively. The onset cure temperature and peak temperature of the DGEBA/2PZ–PMMA microcapsule system appeared to increase by nearly 30 and 10°C, respectively, versus those of the DGEBA/2PZ system because of the increased reaction energy of curing. The former could take more than 3 months at room temperature, whereas the latter was cured after only a week. The values of the reaction order (a curing kinetic parameter) for DGEBA/2PZ and DGEBA/2PZ–PMMA microcapsules were quite close, and this showed that the curing reactions of the two samples proceeded conformably. The curing mechanism was investigated, and a two‐step initiation mechanism was considered: the first was assigned to adduct formation, whereas the second was due to alkoxide‐initiated polymerization. The glass‐transition temperature of DGEBA/2PZ was 165.2°C, nearly 20°C higher than the glass‐transition temperatures of DGEBA/2PZ–PMMA microcapsules and DGEBA/2PZ/PMMA microspheres, as determined by differential scanning calorimetry measurements. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
为了提高nano-SiO2在树脂基体中的分散性,采用一种超支化聚硅氧烷修饰的纳米二氧化硅(HBP-SiO2)改性氰酸酯(CE)树脂。利用非等温差示扫描量热法(DSC)研究了HBP-SiO2/CE电子封装材料的固化动力学,求得其固化工艺参数和固化动力学参数分别为:凝胶温度150.17℃,固化温度197.81℃,后处理温度258.97℃;表观活化能11.22kJ/mol,反应级数0.75,频率因子18342.84s-1。研究表明,HBP-SiO2的加入可以降低CE的活化能,使其固化反应可以在较低温度下进行。  相似文献   

5.
采用示差扫描量热法(DSC)对缩水甘油醚类环氧树脂(E-51)与脂环族环氧树脂(R-122)共同改性的双酚A型氰酸酯(BADCy)树脂的固化反应历程进行了研究。由Kisserger方程求得共聚体系固化反应的表观活化能为60.5 kJ/mol,根据Crane理论求得固化反应级数为0.89,接近于1级反应。该体系起始固化温度为132.1℃,峰顶固化温度为168.7℃,终止固化温度为246.0℃。研究表明,环氧树脂可促进BADCy的固化,改性体系可在177℃以下实现较完全固化。  相似文献   

6.
The kinetics of curing for a modified bismaleimide (BMI) resin was investigated to ascertain a suitable cure model for the material. The resin system used in this study was composed of 4,4′‐bismaleimidodiphenylmethane (BMIM) and 0,0′‐diallyl bisphenol A (DABPA, DABA). The BMIM was the base monomer and the DABPA was the modified agent. A series of isothermal DSC runs provided information about the kinetics of cure in the temperature range 170–220°C. Regardless of the different temperatures, the shape of the conversion curves was similar, and this modified BMI resin system underwent an nth‐order cure reaction. Kinetic parameters of this BMI resin system, including the reaction model, activation energy, and frequency factor, were calculated. From the experimental data, it was found that the cure kinetics of this resin system can be characterized by a first‐order kinetic model. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3338–3342, 2004  相似文献   

7.
采用差示扫描量热(DSC)法和红外光谱(FT-IR)法对缩水甘油胺型环氧树脂(AG-80)与脂环族缩水甘油酯型环氧树脂(TDE-85)共同改性双马来酰亚胺(BMI)/氰酸酯树脂(CE)的固化反应历程进行了研究,并按照Kissinger和Crane法计算出该改性树脂体系固化反应的动力学参数。结果表明:改性树脂体系的固化反应表观活化能为68.11 kJ/mol,固化反应级数为0.860(接近于1级反应);环氧树脂(EP)可促进CE固化,当固化工艺条件为"150℃/3 h→180℃/2 h"时,改性树脂体系可以固化完全。  相似文献   

8.
端羟基聚丁二烯改性氰酸酯体系固化反应动力学   总被引:1,自引:0,他引:1  
采用示差扫描量热法(DSC)研究了端羟基聚丁二烯(HTPB)改性双酚A型氰酸酯树脂(BADCy)体系的固化反应动力学,根据Arrhenius方程对固化过程动力学参数进行了求解,建立了固化反应动力学模型。结果表明,随着HTPB含量的增大,动态DSC固化反应放热峰向低温方向移动,说明HTPB可以催化固化反应并降低体系的反应温度。纯BADCy和BADCy/15%HTPB体系等温固化符合自催化反应模型。纯BADCy体系以及BADCy/15%HTPB体系的表观反应活化能分别为59.67 kJ/mol、56.91 kJ/mol。  相似文献   

9.
以双马来酰亚胺(BMI)、二烯丙基双酚A(BA)和七苯基倍半硅氧烷三硅醇(POSS-triol)为原料,采用非等温差示扫描量热(DSC)法研究了BMI/BA/POSS-triol体系的固化反应过程。运用Kissinger极值法、Crane法、Flynn-Wall-Ozawa(FWO)等转化率法和T-β(温度-升温速率)外推法确定了改性树脂体系的固化反应动力学参数和固化工艺参数。结果表明:改性树脂体系的固化反应活化能和反应级数(接近于1)均随POSS-triol用量增加而变化不大,说明POSS-triol的加入并没有明显改变BMI/BA体系的固化反应机理;改性树脂体系的凝胶温度为175.7℃,固化温度为226.9℃,后处理温度为271.7℃。  相似文献   

10.
The cure of a novolac‐type cyanate ester monomer, which reacts to form a polycyanurate network, was investigated by using differential scanning calorimeter. The conversions and the rates of cure were determined from the exothermic curves at several isothermal temperatures (513–553 K). The experimental data, showing an autocatalytic behavior, conforms to the kinetic model proposed by Kamal, which includes two reaction orders, m and n, and two rate constants, k1 and k2. These kinetic parameters for each curing temperature were obtained by using Kenny's graphic‐analytical technique. The overall reaction order was about 1.99 (m = 0.99, n = 1.0) and the activation energies for the rate constants, k1 and k2, were 80.9 and 82.3 kJ/mol, respectively. The results show that the autocatalytic model predicted the curing kinetics very well at high curing temperatures. However, at low curing temperatures, deviation from experimental data was observed after gelation occurred. The kinetic model was, therefore, modified to predict the cure kinetics over the whole range of conversion. After modification, the overall reaction order slightly decreased to be 1.94 (m = 0.95, n = 0.99), and the activation energies for the rate constants, k1 and k2, were found to be 86.4 and 80.2 kJ/mol. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3067–3079, 2004  相似文献   

11.
运用非等温DSC(差示扫描量热)法对Sikapower-492G型汽车用EP(环氧树脂)结构胶在动态升温过程中的固化动力学进行了研究。根据不同升温速率时的DSC曲线,采用Kissinger法、Crane法、Ozawa法和温度-升温速率(T-β)外推法等得到该EP胶粘剂的动力学参数。结果表明:该EP胶粘剂体系的固化动力学可用1级固化动力学模型进行表征;该EP胶粘剂的凝胶化温度、固化温度和后处理温度约分别为123、164、224℃,其表观活化能、频率因子和反应级数等动力学参数分别为117 kJ/mol、1.80×1013 s-1和0.934。  相似文献   

12.
应用差示扫描量热分析(DSC)对不同比例的酚醛型环氧树脂/双酚A型氰酸酯树脂体系固化动力学进行了研究,并通过Kissinger法、Ozawa法和Crane法求得了体系的固化动力学参数。结果表明,当环氧树脂与氰酸酯的摩尔比为2∶1时,由Kissinger法和Ozawa法计算得到的表观活化能在体系中最小,分别为49.05 kJ/mol和54.86 kJ/mol,Crane方程求得的表观反应级数为1~2。  相似文献   

13.
A mixture of diglycidylether of bisphenol A (DGEBA) and γ‐butyrolactone (γ‐BL) was cured in the presence of ytterbium triflate as a catalyst. The kinetics of the various elemental processes that occur in the curing process were studied by means of isothermal curing in the FTIR spectrometer. The kinetics of the contraction during the curing was also evaluated by TMA. In both cases, the kinetics was analyzed by means of isoconversional procedure and the kinetic model was determined with the so‐called compensation effect (isokinetic relationship). The isothermal kinetic analysis was compared with that obtained by dynamic curing in DSC. We found that all the reactive processes and the contraction follow a surface‐controlled reaction type of kinetic mechanism, R3. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 381–393, 2004  相似文献   

14.
杨灿  贾艳玲  程圆圆 《粘接》2014,(3):47-50
在不同升温速率下,用差示扫描量热分析(DSC)研究了腰果酚缩醛胺固化剂(PCD)与环氧树脂的固化反应动力学。通过Kissinger、Crane方程和等转化率的方法求得了其表观活化能E=39.89kJ/mol,固化反应级数n=0.906。  相似文献   

15.
The ability to understand and model the mechanism of cure kinetics accurately is crucial for the production of thermosetting resin‐based nanocomposites. This article reports on work performed to elucidate an accurate model of cure kinetics for the formation of polybenzoxazine–montorillonite nanocomposites through the use of differential scanning calorimetry with nonisothermal methods, including single‐heating and multiple‐heating methods. The results indicated that both the Kissinger and Ozawa methods for calculating the activation energy gave fairly close results of 115 and 120 kJ/mol, respectively. The reaction order was about 1.31, calculated from the single‐heating method based on the autocatalytic method, and a comparison was made of the dynamic curing behaviors in the syntheses of polybenzoxazine and polybenzoxazine–montorillonite nanocomposites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 194–200, 2003  相似文献   

16.
环氧树脂改性氰酸酯树脂固化体系研究   总被引:1,自引:0,他引:1  
采用差示扫描量热(DSC)法对脂环族环氧树脂(L2)改性双酚A型氰酸酯树脂(CE)的固化反应历程进行了研究,并探讨了L2用量对CE耐热性能和粘接强度等影响。结果表明:L2对CE的固化反应具有催化作用,但当w(L2)≥30%时,其催化效果因稀释作用而降低;纯CE和CE/L2体系在等温(210℃)固化反应过程中,其转化率在起始反应10 min内分别达到80%和91%左右;当w(L2)=10%时,CE/L2改性体系的拉伸剪切强度(22.80 MPa)和压缩剪切强度(44.40 MPa)较高,同时其耐热性能较好。  相似文献   

17.
This article describes the curing and thermal behavior of diglycidyl ether of bisphenol A with phthalic anhydride (PA)/pyromellitic anhydride/diaminodiphenyl sulfone (DDS) or a mixture of anhydrides and amines in varying ratios as curing agents. The kinetics of the curing behavior was investigated with a multiple‐rate method. The activation energy of the curing reaction as determined in accordance with Ozawa's method was found dependent on the structure of the anhydride and on the ratio of amines to anhydrides. The activation energy was highest with sample DP3 (0.25 : 0.75) and DM3 (0.25 : 0.75). We evaluated the thermal stability of epoxy resin, cured isothermally, by recording thermogravimetric traces in a nitrogen atmosphere. The char yield was highest for resins cured with a mixture of DDS and PA (0.5 : 0.5) and a mixture of DDS and pyromellitic dianhydride (0.25 : 0.75). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3919–3925, 2006  相似文献   

18.
A bisphenol A type novolac resin (Bis‐ANR) was synthesized from bisphenol A and formaldehyde; the resulting novolac was epoxidized to generate a bisphenol A type novolac epoxy resin (Bis‐ANER). The chemical structures of Bis‐ANR and Bis‐ANER were confirmed by 1H‐NMR spectroscopy and IR spectroscopy; the molecular weights and molecular weight distributions were determined by gel permeation chromatography. In addition, the curing process of Bis‐ANER with 4,4′‐diaminodiphenyl sulfone was studied in both dynamic and isothermal modes with differential scanning calorimetry. The dynamic curing kinetic analysis was evaluated with both the Kissinger and Flynn–Wall–Ozawa methods, and the curing activation energy values were obtained. The isothermal curing reaction exhibited autocatalytic behavior, and the curing kinetics were described with the Kamal kinetics model, which accounted for both the autocatalytic and diffusion‐control effects. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 858–868, 2006  相似文献   

19.
The rheological behavior of a phenolic resol resin during its curing process was studied through a rheological dynamic‐temperature analysis. Two heating ramps from 0 to 120°C (1°C/min) and from 0 to 150°C (5°C/min) were performed. The resin's complex viscosity data were obtained by applying a rectangular torsion strain. The overall change of complex viscosity with temperature was due to a combination of thermal softening, described by the Andrade equation, and the resin crosslinking process. The four‐ and six‐parameter Arrhenius rheokinetic model was applied to the profiles obtained for the resin's complex viscosity, and the viscous flow and activation energies of curing kinetics were established. Two calculation methods are proposed to obtain the flow and curing parameters of the material. The six‐parameter Arrhenius model was more suitable for predicting changes in the resin's complex viscosity, obtaining an activation energy of ~ 38.0 kJ/mol for the resol resin curing process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Diglycidyl ether of 9,9‐bis(4‐hydroxyphenyl) fluorene (DGEBF) was synthesized to introduce more aromatic structures into an epoxy resin system. The structure of DGEBF was characterized with Fourier transform infrared and 1H‐NMR. 4,4′‐Diaminodiphenylmethane (DDM) was used as the curing agent for DGEBF, and differential scanning calorimetry was applied to study the curing kinetics. The glass‐transition temperature of the cured DGEBF/DDM, determined by dynamic mechanical analysis, was 260°C, which was about 100°C higher than that of widely used diglycidyl ether of bisphenol A (DGEBA). Thermogravimetric analysis was used to study the thermal degradation behavior of the cured DGEBF/DDM system: its onset degradation temperature was 370°C, and at 700°C, its char yield was about 27%, whereas that of cured DGEBA/DDM was only 14%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号