首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以N,N-二甲基甲酰胺(DMF)为溶剂,以聚丙烯腈(PAN)为碳前驱体,聚甲基丙烯酸甲酯(PMMA)为热裂解聚合物,制备PAN/PMMA溶液共混体系,经湿法纺丝及碳化工艺制备了纳米碳纤维(CNFs);讨论了影响CNFs形态、尺寸的主要因素,通过傅里叶变换红外光谱、X射线衍射、拉曼光谱和电导率测试等对CNFs进行了表征。结果表明:相对分子质量为8.0×10~4的PAN与PMMA以质量比30/70进行共混纺丝和碳化,可以得到CNFs;增加原丝的拉伸倍数有利于减小CNFs的直径,当拉伸倍数提高到6时,CNFs直径为50~150nm;碳化温度为800℃时,CNFs出现石墨相结构;提高碳化温度有利于CNFs石墨化结构的形成与电导率的提高。  相似文献   

2.
The time effect of ultrasonication was investigated for dispersing carbon nanofibers (CNFs) into a polycarbonate (PC) matrix on the mechanical properties of thus‐produced composites. The effects of CNF surface modification by plasma treatment and the CNF concentration in composites on their mechanical properties were also explored. The plasma coating was characterized by HRTEM and FT‐IR. Furthermore, the plasma polymerization (10 w) treatment on the CNF enhanced the CNF dispersion in the polymer matrix. The mechanical properties of the CNF–PC composites varied with the dispersion time, at first increasing to a maximum value and then dropping down. After a long ultrasonic treatment (24 h), the properties increased again. At a high concentration, the CNF‐PC suspension became difficult to disperse. Additionally, the possible mechanisms for these behaviors are simply proposed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3792–3797, 2007  相似文献   

3.
Ternary composites composed of polyoxymethylene (POM), polyurethane (PU), and boehmite alumina were produced by melt blending with and without latex precompounding. Latex precompounding served for the predispersion of the alumina particles. The related masterbatch (MB) was produced by mixing the PU latex with water‐dispersible boehmite alumina. The dispersion of the alumina was studied by transmission and scanning electron microscopy techniques (TEM and SEM, respectively) and discussed. The crystallization of POM was inspected by means of differential scanning calorimetry (DSC) and polarized optical microscopy (DSC and polarized light microscopy, respectively). The mechanical and thermomechanical properties of the composites were determined in uniaxial tensile, dynamic‐mechanical thermal analysis (DMTA), short‐time creep tests (performed at various temperatures), and thermogravimetric analysis (TGA). The melt flow of the composites was characterized in a plate/plate rheometer. In addition, the dielectric response of the nanocomposites was investigated by means of broadband dielectric spectroscopy at an ambient temperature. The composites produced by the MB technique outperformed the direct melt (DM) compounded composites in respect to the thermal and mechanical characteristics. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
In this study, glass fiber reinforced polyester composites were coated with carbon nanofiber/clay/ammonium polyphosphate (CCA) paper and carbon nanofiber/exfoliated graphite nanoplatelets/ammonium polyphosphate (CXA) paper. The composites were exposed to a heat flux of 35 kW/m2 during the cone calorimeter testing. The testing results showed a significant reduction in both heat release rates and mass loss rates. The peak heat release rate (PHRR) of CCA and CXA composite samples in the major decomposition period are 23 and 34% lower than the control sample, respectively. The time to reach the PHRR for the CCA and CXA composite samples are ~ 125% longer than the control sample. After the composite samples were exposed to heat for different time periods, their post‐fire mechanical properties were determined by three‐point bending testing. The three‐point bending testing results show that the composite samples coated with such hybrid papers exhibit more than 20% improvement in mechanical resistance at early stages of combustion. The mechanism of hybrid carbon nanofiber paper protecting the underlying laminated composites is discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
The relationships between the compatibility in binary polymer blends and the pore sizes of carbon nanofibers (CNFs) prepared from the blends were investigated. Compatibility was determined by the difference between the solubility parameters of each polymer in the polymer blends. Porous CNFs were prepared by an electrospinning and carbonization process using binary polymer blends, consisting of polyacrylonitrile (PAN) as the carbonizing polymer and poly(acrylic acid) (PAA), poly(ethylene glycol), poly(methyl methacrylate) or polystyrene (PS) as the pyrolyzing polymer. The pore size of the CNFs increased with increasing difference in solubility parameter. The CNFs prepared using the PAN/PAA blend, which had the smallest solubility parameter difference, exhibited a pore size of 1.66 nm compared to 18.24 nm for the CNFs prepared using the PAN/PS blend. The prepared CNF webs with controlled meso‐sized pores showed a stable cycle performance in cyclic voltammetry measurements and improved impedance characteristics. This method focusing on the compatibility in polymer blends was simple to apply and effective for controlling the pore sizes and surface area of CNFs for application as electrode materials in energy storage systems. © 2013 Society of Chemical Industry  相似文献   

6.
Natural rubber (NR) composites with different contents of 1, 3, 10, and 20 wt% vapor‐grown carbon nanofibers (VGCFs) were synthesized using a solvent casting method. The initial modulus of composites was improved by 26.5 %/wt% as the VGCFs were added, and the NR/3 wt%VGCF composite had the largest tensile strength. The experiment values of initial moduli agreed well with the values predicted by the Halpin‐Tsai theory. The reinforcement mechanisms of the composites were investigated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and wide‐angle X‐ray diffraction (WAXD). It was found that an efficient stress transfer occurred from NR to VGCFs under the uniaxial stretching. The addition of 10 wt% VGCFs could promote the nucleation process of NR, which resulted in the characteristic of the strain‐induced crystallization (SIC) in NR/10 wt%VGCF composite even for low strain. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
Owing to the superior corrosion resistance, fiber-reinforced polymer (FRP) composites are the prime choice of structural materials for various marine and chemical industries, where there is a long-term direct contact of the components takes place with corrosive fluids. In this present work, glass fiber/epoxy (GE) composites have been fabricated with and without carbon nanofibers (CNFs), and aging has been carried out in acidic (pH = 1), seawater (pH = 8.2), and alkaline (pH = 13) solutions for 150 days. The resistance of CNF-filled GE composites toward the corrosive fluids has been evaluated in terms of alteration in the mechanical (flexural), microstructural (fractography analysis by field emission scanning electron microscope), and thermomechanical (dynamic mechanical analysis) behavior of the materials. It is revealed that as the immersion time increases, there is a continuous decrement in flexural strength and modulus, and glass-transition temperature (Tg) of all the materials in all these solutions. Compared to the 1% CNF-filled GE composite, control GE composite showed more degradation in the case of alkaline aging and seawater aging. Maximum reduction (56%) in the strength of GE composite was observed due to 150 days of alkaline aging. However, the control GE composite showed better resistance to the acidic solution than that of CNF-filled GE composite. Possible failure modes, changes in the chemistry of the material due to aging have been studied by fractography analysis. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48434.  相似文献   

8.
Alumina fillers were incorporated in polystyrene (PS) in 4.5 wt % by melt blending with and without latex precompounding. Latex precompounding was used for the latex‐mediated predispersion of the alumina particles. The related masterbatch was produced by mixing PS latex with water dispersible boehmite alumina in various particle sizes followed by drying. The dispersion of the alumina in the PS was studied by transmission and scanning electron microscopy (TEM and SEM, respectively). The mechanical and thermomechanical properties of the PS composites were determined in uniaxial tensile, dynamic‐mechanical thermal analysis (DMTA), and short‐time creep tests performed at various temperatures. In addition, the melt flow of the composites was characterized in a plate/plate rheometer. It was found that direct melt mixing of the alumina with PS resulted in micro‐, whereas the masterbatch technique in nanocomposites. The stiffness and resistance to creep (summarized in master curves) of the nanocomposites were improved compared to those of the microcomposites. The properties of the composites were upgraded by decreasing nominal size of the water dispersible alumina. The preparation technique and the size of the alumina particles affected the tensile strength, melt viscosity, and heat distortion temperature in lesser extent than the stiffness and thus compliance data. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
This article demonstrates the properties of open‐cell flexible polyurethane foams incorporating multi‐walled carbon nanotubes. Three different types of highly functionalized nanotubes having carboxyl, hydroxyl and amide functional groups were synthesized. Neat polyurethane foam and three nanocomposite foams filled with 0.1 wt% of treated nanotubes were prepared. It was found that thermal stability, mechanical properties and acoustic damping were improved significantly by incorporation of small amounts of nanotubes. The nanotubes modified with carboxyl groups were found to have much more influence compared to the other two functional groups, possibly due to better interfacial interaction and improved dispersion. Scanning electron microscopy revealed micro‐cells with average diameters less than 5 µm in the skeleton of foams filled with nanotubes modified with hydroxyl and carboxyl, the formation of which was attributed to the generation of gaseous materials through the reaction with isocyanate. Such micro‐cells were found to be influential in improving mechanical and acoustic damping. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
Hydrogenated nitrile rubber (HNBR) and synthetic nanofillers, viz. water‐swellable sodium fluorohectorite (FH) and water dispersible boehmite alumina (BA), were used to toughen and reinforce polyamide‐6 (PA‐6). FH and BA were introduced in HNBR latex that was dried prior to melt mixing with PA‐6. Binary blend (PA‐6/HNBR) and ternary nanocomposites (PA‐6/HNBR/nanofiller) were produced and their structure–property relationships studied. HNBR was coarsely and microscale dispersed in PA‐6. FH, slightly intercalated, was present in PA‐6 and in the PA‐6/HNBR interphase, whereas BA was mostly located in the HNBR droplets. HNBR improved the ductility of the PA‐6/HNBR blend at cost of stiffness and strength. The fracture toughness and energy, determined on notched Charpy specimens at different temperatures (T = ?30°C, room temperature, and T = 80°C) were improved by blending with HNBR at 9 wt %. Additional incorporation of the nanofillers in 2.5 wt % enhanced the stiffness and strength of the PA‐6/HNBR blend but reduced its ductility. The fracture toughness of the ternary nanocomposites was between those of PA‐6 and PA‐6/HNBR, whereas their fracture energy fairly agreed with that of the parent PA‐6. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
To improve the mechanical and surface properties of poly(etherurethane) (PEU), multi‐walled carbon nanotubes (MWCNTs) were surface grafted by 3,3,4,4, 5,5,6,6,7,7,8,8,8‐tridecafluoro‐1‐octanol (TDFOL) (MWCNT‐TDFOL) and used as reinforcing agent for PEU. Fourier‐transform infrared spectroscopy revealed the successful grafting of MWCNTs. PEU filled with MWCNT‐TDFOL could be well dispersed in tetrahydrofuran solution, and tensile stress–strain results and dynamic mechanical analysis showed a remarkable increase in mechanical properties of PEU by adding a small amount of MWCNT‐TDFOL. Contact angle testing displayed a limited improvement (just 9°) in the hydrophobicity of PEU surface by solution blending with MWCNT‐TDFOL. However, a large improvement of surface hydrophobicity was observed by directly depositing MWCNT‐TDFOL powder on PEU surface, and the water contact angle was increased from 80° to 138°. Our work demonstrated a new way for the modification of carbon nanotubes and for the property improvement of PEU. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

13.
This work aims at improving the interfacial bonding between polyamide‐12 and CNFs. CNFs were oxidized and dispersed in polyamide‐12 giving rise to polymer nanocomposites. The oxidation caused an increase in the specific surface area and structural defects of the fibers, as indicated by surface area and Fourier‐transform Raman spectroscopy. The nanocomposites exhibited improved thermal and thermo‐oxidative stabilities. The oxidized nanofibers had marginal effect on the crystallinity and crystallization of the polyamide‐12. An over‐proportional enhancement of stiffness due to the fibers could be achieved. In spite of these improvements the fiber/polymer adhesion should be further improved.

  相似文献   


14.
The polyurethane composites with conducting carbon black (CB) were prepared by a solution‐precipitation process, which was followed by melt compression molding. The polyurethane used has good shape memory effect. The morphology of CB fillers in polyurethane matrix and the resulting conductivity of the composites were investigated. It has been found that CB fillers exist in the forms of aggregates. The percolation threshold is achieved at the CB concentration of 20 wt %. The presence of CB fillers decreases the degree of crystallinity of polycaprolactone (PCL) soft segments of the polyurethane. However, the composites still have enough soft‐segment crystals of polyurethane to fulfil the necessary condition for the shape memory properties. Dynamic mechanical data show that CB is an effective filler for the reinforcement of the polyurethane matrix, but does not deteriorate the stable physical cross‐link structure of the polyurethane, which is necessary to store the elastic energy in the service process of the shape memory materials. Addition of CB reinforcement in the polyurethane has influenced the strain recovery properties, especially for those samples with CB concentrations above the percolation threshold. The response temperature of the shape memory effect Tr has not been affected too much. Strain fixation Sf, which expresses the ability of the specimens to fix their strain, has been improved in the presence of the CB fillers. The final recovery rates Rf and strain recovery speeds Vr of the shape memory measurements, however, have decreased evidently. It is expectedly ascribed to the increased bulk viscosity as well as the impeding effect of the inter‐connective structure of CB fillers in the polymer matrix. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 68–77, 2000  相似文献   

15.
A review of vapor grown carbon nanofiber/polymer conductive composites   总被引:3,自引:0,他引:3  
Vapor grown carbon nanofiber (VGCNF)/polymer conductive composites are elegant materials that exhibit superior electrical, electromagnetic interference (EMI) shielding effectiveness (SE) and thermal properties compared to conventional conductive polymer composites. This article reviews recent developments in VGCNF/polymer conductive composites. The article starts with a concise and general background about VGCNF production, applications, structure, dimension, and electrical, thermal and mechanical properties. Next composites of VGCNF/polymer are discussed. Composite electrical, EMI SE and thermal properties are elaborated in terms of nanofibers dispersion, distribution and aspect ratio. Special emphasis is paid to dispersion of nanofibers by melt mixing. Influence of other processing methods such as in-situ polymerization, spinning, and solution processing on final properties of VGCNF/polymer composite is also reviewed. We present properties of CNTs and CFs, which are competitive fillers to VGCNFs, and the most significant properties of their composites compared to those of VGCNF/polymer composites. At the conclusion of the article, we summarize the most significant achievements and address the future challenges and tasks in the area related to characterizing VGCNF aspect ratio and dispersion, determining the influence of processing methods and conditions on VGCNF/polymer composites and understanding the structure/property relationship in VGCNF/polymer composites.  相似文献   

16.
BACKGROUND: The technological development of poly(ε‐caprolactone) (PCL) is limited by its short useful lifespan, low modulus and high crystallinity. There are a few papers dealing with the crystallization behavior of carbon nanotube‐reinforced PCL composites. However, little work has been done on the crystallization kinetics of melt‐compounded PCL/multiwalled carbon nanotube (MWNT) nanocomposites. In this study, PCL/MWNT nanocomposites were successfully prepared by a simple melt‐compounding method, and their morphology and mechanical properties as well as their crystallization kinetics were studied. RESULTS: The MWNTs were observed to be homogeneously dispersed throughout the PCL matrix. The incorporation of a very small quantity of MWNTs significantly improved the storage modulus and loss modulus of the PCL/MWNT nanocomposites. The nonisothermal crystallization behavior of the PCL/MWNT nanocomposites exhibits strong dependencies of the degree of crystallinity (Xc), peak crystallization temperature (Tp), half‐time of crystallization (t1/2) and Avrami exponent (n) on the MWNT content and cooling rate. The MWNTs in the PCL/MWNT nanocomposites exhibit a higher nucleation activity. The crystallization activation energy (Ea) calculated with the Kissinger model is higher when a small amount of MWNTs is added, then gradually decreases; all the Ea values are higher than that of pure PCL. CONCLUSION: This paper reports for the first time the preparation of high‐performance biopolymer PCL/MWNT nanocomposites prepared by a simple melt‐compounding method. The results show that the PCL/MWNT nanocomposites can broaden the applications of PCL. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
A series of carbon nanofiber (CNF)/polydimethylsiloxane (PDMS)‐based nanocomposites was prepared by anionic ring opening polymerization of octamethylcyclotetrasiloxane (D4) in presence of pristine CNF and amine‐modified CNF. A detailed study of morphology–property relationship of the nanocomposites was carried out in order to understand the effect of chemical modification and loading of filler on property enhancement of the nanocomposites. An elaborate comparison of structure and properties was carried out for the nanocomposites prepared by in situ and conventional ex situ methods. Pronounced improvement in degree of dispersion of the fillers in the matrix on amine modification of CNFs was reflected in mechanical properties of the modified nanocomposites. Maximum upliftment in mechanical properties was observed for in situ prepared amine modified CNF/hydroxyl PDMS nanocomposites. For 8 phr filler loading, tensile strength increased by 370%, while tensile modulus showed an increase of 515% compared with the virgin elastomer. Furthermore, in situ prepared unmodified CNF/hydroxyl PDMS nanocomposites showed an increase of 141°C in temperature of maximum degradation (Tmax) for 8 phr CNF loading. These results were correlated with the morphological analysis through transmission electron microscopic studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
A series of poly(styrene‐acrylonitrile)/poly(ethyl acrylate‐n‐butyl acrylate) latex interpenetrating polymer networks (LIPNs) are synthesized by changing the kind of crosslinker and introducing a buffer. The results show that the crosslinker has an important effect on the damping properties of the LIPNs; divinylbenzene is the best crosslinker in the study. Moreover, introducing a buffer into LIPNs leads to an increase of the damping values over the temperature range where the damping value surpasses 0.5. The LIPN blend prepared by mixing LIPNs results in broadening of the damping peak, therefore improving the damping properties. Tests of the damping properties show that the LIPNs have good practical value. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2347–2351, 2002  相似文献   

19.
New polymer blends of polypropylene random copolymer (PP‐R) and poly(ethylene‐octene) (POE) were prepared by melt‐blending process using a corotating twin‐screw extruder. The POE content was varied up to 35%. The toughening efficiency of POE for PP‐R was evaluated by the mechanical properties of the resulted PP‐R/POE blends. The crystallization behavior and morphology of the blends were also studied. Results show that POE acts as nucleation agent to induce the crystallization of PP‐R matrix at higher crystallization temperature. Super‐toughened PP‐R/POE blends (Izod impact strength more than 500 J/m) can be readily achieved with only 10 wt % of POE. The high toughness of PP‐R/POE is attributed to cavitation and shear yielding of matrix PP‐R, as revealed by the morphology studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Poly(butylene succinate) (PBS)/pristine raw multiwalled carbon nanotube (MWCNT) composites were prepared in this work via simple melt compounding. Morphological observations indicated that the MWCNTs were well dispersed in the PBS matrix. Moreover, the incorporation of MWCNTs did not affect the crystal form of PBS as measured by wide‐angle X‐ray diffraction. The rheology, crystallization behaviors, and thermal stabilities of PBS/MWCNT composites were studied in detail. Compared with neat PBS, the incorporation of MWCNTs into the matrix led to higher complex viscosities (|η*|), storage modulus (G′), loss modulus (G″), shear thinning behaviors, and lower damping factor (tan δ) at low frequency range, and shifted the PBS/MWCNT composites from liquid‐like to solid‐like, which affected the crystallization behaviors and thermal stabilities of PBS. The presence of a very small quantity of MWCNTs had a significant heterogeneous‐nucleation effect on the crystallization of PBS, resulting in the enhancement of crystallization temperature, i.e., with the addition of 0.5 wt % MWCNTs, the values of Tc of PBS/MWCNT composites could attain to 90°C, about 6°C higher than that of neat PBS, whereas the values of Tc increased slightly with further increasing the MWCNTs content. The thermogravimetric analysis illustrated that the thermal stability of PBS was improved with the addition of MWCNTs compared with that of neat PBS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号