首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports a systematic study of the effects of a promoter, iron-tetrasulfophthalocyanine (FeTSPc), on the catalytic activities of carbon supported Pt, PtRu, and Pd catalysts (Pt/C, PtRu/C, and Pd/C) for formic acid oxidation. A multi-anode direct formic acid fuel cell (DFAFC) was used to compare the effects on each catalyst of adding FeTSPc to the fuel stream. The FeTSPc significantly enhanced the activity of the Pt/C catalyst, but had little effect on the PtRu/C catalyst. The activity of the Pd/C catalyst was inhibited by the FeTSPc. A FeTSPc modified Pt/C was also evaluated in a conventional 5 cm2 DFAFC.  相似文献   

2.
Electrocatalysis of CO tolerance and direct methanol oxidation on PtMo/C (3:1 a/o) has been investigated in a PEM fuel cell environment. While a 3-fold enhancement is observed for CO tolerance when compared with PtRu/C (1:1), no such enhancement occurred for methanol oxidation. In situ XAS at the Pt L and alloying element K edges for Pt/C, PtRu/C and PtMo/C showed that in contrast to PtRu/C, both Mo and Pt surfaces play a distinct role for CO oxidation. While on the Ru surface there is a competition between oxide formation (from activation of water) and CO adsorption, Mo oxide surface showed no affinity for CO. This provided for efficient CO oxidation at low overpotentials on PtMo/C. However, the corresponding behavior for methanol oxidation showed that Mo oxy-hydroxides were inhibited from efficient removal of CO and CHO species in contrast to Ru oxides. The Mo surface oxides also showed a redox couple involving (V to VI) oxidation states in the presence of both CO and methanol.  相似文献   

3.
The possibility of using methanol or formic acid oxidation as the anode process in zinc electrowinning was examined. The activity for methanol and formic acid oxidation on Pt coated high surface area electrodes was investigated over 36 h, at a current density used in industry. The activity could be maintained at a constant potential level in a synthetic electrowinning electrolyte if the current was reversed for short periods. During the tests, the anode potential was, more than 1.2 V below the potential for the oxygen evolving lead anodes used in modern zinc electrowinning. The lowered anode potential would lead to a significant energy reduction. However, tests in industrial electrolyte resulted in a very low activity for both methanol and formic acid oxidation. The low activity was shown to be caused mainly by chloride impurities. A reduction of the chloride content below 10−5 M is needed in order to obtain sufficient activity for methanol oxidation on Pt for use in zinc electrowinning. Pt and PtRu electrodes were compared regarding their activity for methanol oxidation and the latter was shown to be more affected by chloride impurities. However, at a potential of 0.7 V vs NHE, with a chloride content of 10−4 M, formic acid oxidation on PtRu gives the highest current density.  相似文献   

4.
We report the synthesis of PtRu nanoparticles on the multi-walled carbon nanotubes (MWCNTs) by a simple sodium borohydride reduction method. Transmission electron microscopy (TEM) analysis indicated that well-dispersed small (2-3 nm) PtRu particles were formed on the MWCNTs. X-ray diffraction (XRD) analysis confirmed the formation of the PtRu alloy on the MWCNTs. X-ray photoelectron spectroscopy (XPS) measurements revealed that 70.4% Pt and 61.0% Ru are present in their metallic states. Cyclic voltammetry (CV) and chronoamperometry results demonstrated that the PtRu/MWCNT synthesized by this method exhibited a higher methanol oxidation current than did the PtRu/MWCNT synthesized by the more complex method using sodium borohydride as the reducing agent and tetraoctyl ammonium bromide as the stabilizer. Finally, the direct methanol fuel cell (DMFC) performance test showed that the PtRu/MWCNT nanocatalyst used at the anode of the fuel cell yielded higher performance than did the commercial E-TEK PtRu/C catalyst.  相似文献   

5.
Methanol, ethanol and formic acid electrooxidations in acid medium on Pt/C and PtRu/C catalysts were investigated. The catalysts were prepared by a microwave-assisted polyol process. Cyclic voltammetry and chronoamperometry were employed to provide quantitative and qualitative information on the kinetics of methanol, ethanol and formic acid oxidations. The PtRu/C catalyst showed higher anodic current densities than the Pt/C catalyst and the addition of Ru reduced the poisoning effect.  相似文献   

6.
二甲醚在Pt系催化剂上的电氧化行为初探   总被引:4,自引:0,他引:4  
本实验用化学浸渍-还原法,甲醛为还原剂制备直接二甲醚燃料电池阳极催化剂。用循环伏安法和稳态极化法,采用粉末微电极技术,研究二甲醚在自制Pt/C、PtSn/C和PtRu/C催化剂上的氧化行为。研究结果显示,二甲醚在PtRu/C上有较佳的反应活性。在PtRu/C催化剂上考察温度对于二甲醚电氧化的催化活性的影响,得出温度的升高有利于二甲醚电氧化的进行。  相似文献   

7.
自呼吸式直接甲醇燃料电池性能及其传质特性   总被引:1,自引:1,他引:0  
针对有效面积为1 cm2的自呼吸式直接甲醇燃料电池(direct methanol fuel cell,DMFC)单电池,阳极采用燃料罐供液,将阴极侧集流体和夹具设计为一体式结构,并用自制的七合一膜电极组件对其进行测试,讨论了催化剂类型、扩散层材料、集流体结构等因素对其性能的影响,分析了电池内部的传质特性,优化了电池特别是其在中高电流密度条件下的性能。实验结果表明:采用Pt黑、Pt-Ru黑催化剂制作的自呼吸式DMFC能强化反应物的传质;采用碳布制作的膜电极更倾向于获得更高的极限电流密度;低电流密度时,因甲醇渗透电池电压随着甲醇浓度的增加而降低,但在中高电流密度下,电池性能随甲醇浓度的增大先升高后降低;平行集流体有利于阴阳极生成物的排出和反应物的传质,因此易获得较高的电池性能。  相似文献   

8.
PtRu/C nanocatalysts were prepared by changing the molar ratio of citric acid to platinum and ruthenium metal salts (CA:PtRu) from 1:1, 2:1, 3:1 to 4:1 using sodium borohydride as a reducing agent. Transmission electron microscopy analysis indicated that well-dispersed smaller PtRu particles (2.6 nm) were obtained when the molar ratio was maintained at 1:1. X-ray diffraction analysis confirmed the formation of PtRu alloy; the atomic percentage of the alloy analyzed by the energy dispersive X-ray spectrum indicated an enrichment of Pt in the nanocatalyst. X-ray photoelectron spectroscopy measurements revealed that 83.34% of Pt and 79.54% of Ru were present in their metallic states. Both the linear sweep voltammetry and chronoamperometric results demonstrated that the 1:1 molar ratio catalyst exhibited a higher methanol oxidation current and a lower poisoning rate among all the other molar ratios catalysts. The CO stripping voltammetry studies showed that the E-TEK catalyst had a relatively higher CO oxidation current than did the 1:1 molar ratio catalyst. Testing of the PtRu/C catalysts at the anode of a direct methanol fuel cell (DMFC) indicated that the in-house PtRu/C nanocatalyst gave a slightly higher performance than did the E-TEK catalyst.  相似文献   

9.
Membrane electrode assemblies (MEA) were prepared using PtRu black and 60 wt.% carbon-supported platinum (Pt/C) as their anode and cathode catalysts, respectively. The cathode catalyst layers were fabricated using various amounts of Pt (0.5 mg cm−2, 1.0 mg cm−2, 2.0 mg cm−2, and 3.0 mg cm−2). To study the effect of carbon support on performance, a MEA in which Pt black was used as the cathode catalyst was fabricated. In addition, the effect of methanol crossover on the Pt/C on the cathode side of a direct methanol fuel cell (DMFC) was investigated. The performance of the single cell that used Pt/C as the cathode catalyst was higher than single cell that used Pt black and this result was pronounced when highly concentrated methanol (above 2.0 M) was used as the fuel.  相似文献   

10.
Pt–Cu/reduced graphene oxide (Pt–Cu/RGO) hybrids with different Pt/Cu ratios were prepared by the reduction of H2PtCl6 and CuSO4 by NaBH4 in the presence of graphene oxide (GO). The Pt–Cu nanoparticles were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The reduction of GO was verified by ultraviolet–visible absorption spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Compared to Pt/RGO, the Pt–Cu/RGO hybrids have superior electrocatalytic activity and stability for the oxidation of methanol and formic acid. Thus they should have potential applications in direct methanol and formic acid fuel cells.  相似文献   

11.
The addition of Au/TiO2 and zeolites as active components to PtRu/C electrode in DMFC was investigated by using combinatorial high-throughput-screening test. Addition of Au/TiO2 to PtRu/C electrode, especially in the ratio of PtRu/C: Au/TiO2 9:1, 8:2, 7:3, were effective to improve the performance of direct methanol fuel cell. The electrochemical properties of the prepared electrodes were compared using cyclic voltammetry, impedance spectroscopy and a single cell performance test of a direct methanol fuel cell (DMFC). The adsorbed CO on Pt might be easily oxidized on the surface of Au/TiO2 by interaction between PtRu/C and Au/TiO2. The addition of the solid acid proton conducting materials (ZSM-5) on PtRu/C anode leads to the high temperature operation. The cell performance was maintained over the cell temperature 120 °C (maximum current density was 200 mA/cm2 at 160 °C) by the addition of ZSM-5 as proton conducting materials.  相似文献   

12.
The effect of the inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported anode electrocatalysts on CO tolerance in proton exchange membrane fuel cells (PEMFC) has been investigated by cyclic voltammetry and fuel cell tests. CO stripping voltammetry on binary PtxM/C (M: Mo, Nb, Ta) reveals partial oxidation of the CO adlayer at low potential, with PtMo (4:1)/C exhibiting the lowest value. At 80 °C, the operating temperature of the fuel cell, CO oxidation was observed at potentials close to 0 V versus the reversible hydrogen electrode (RHE). No significant difference for CO electro-oxidation at the lower potential limit, compared to PtRu/C, was observed for PtRuMy/C (M: Mo, Nb). Fuel cell tests demonstrated that while all the prepared catalysts exhibited enhanced performance compared to Pt/C, only the addition of a relatively small amount of Mo to PtRu results in an electrocatalyst with a higher activity, in the presence of carbon monoxide, to PtRu/C, the current catalyst of choice for PEM fuel cell applications.  相似文献   

13.
Direct formic acid fuel cells (DFAFC) currently employ either Pt-based or Pd-based anode catalysts for oxidation of formic acid. However, improvements are needed in either the activity of Pt-based catalysts or the stability of Pd-based catalysts. In this study, a number of carbon-supported Pt-based and Pd-based catalysts, were prepared by co-depositing PdM (M = Bi, Mo, or V) on Vulcan® XC-72 carbon black, or depositing another metal (Pb or Sn) on a Pt/C catalyst. These catalysts were systematically evaluated and compared with commercial Pd/C, PtRu/C, and Pt/C catalysts in a multi-anode DFAFC. The PtPb/C and PtSn/C catalysts were found to show significantly higher activities than the commercial Pt/C catalyst, while the PdBi/C provided higher stability than the commercial Pd/C catalyst.  相似文献   

14.
Using platinum (Pt) black and carbon-supported Pt (Pt/C) as cathode catalysts, membrane-electrode assemblies (MEAs) were fabricated with various Nafion ionomer content, and their direct formic acid fuel cell (DFAFC) performances were investigated. In MEAs incorporating Pt black catalysts, the current density at 0.6 V was highest at ionomer/catalyst volume ratio of 1.0, which was consistent with the electrochemical active area (EAS) variation measured by cyclic voltammetry. However, the current density measured at 0.3 V, the cell performance increased with Nafion ionomer content, especially at low ionomer loading, indicating that proton transport rate played an important role. The variation in ionic resistance (Rion) of cathode layers with Nafion ionomer content was experimentally confirmed by using the complex capacitance analysis of impedance data implemented with nitrogen (cathodes)/hydrogen (anodes) atmosphere. For Pt/C, the layer thickness and EAS of cathode were larger than those of MEA cathode using Pt black; and the current densities at 0.6 V were lower than those of Pt black, suggesting that smaller fraction of EAS was utilized.  相似文献   

15.
Poly-oxymethylene-dimethylether (CH3-O-(CH2-O)n-CH3 (n = 3), abbreviated as POMM3), which has no toxicity and a very low vapour pressure, unlike methanol, was investigated as a possible liquid fuel for a direct oxidation-type fuel cell. The electrocatalytic activity towards the oxidation of methanol, formaldehyde and a fully hydrolysed form of POMM3 in 0.1 mol dm−3 HClO4 solution was examined from 30 °C to 90 °C by using a channel flow cell system at three different types of PtRu catalysts, dispersed on high surface area supports, i.e., carbon black, antimony-doped tin oxide (Sb-SnO2), and the latter mixed with a certain fraction of acetylene black (AB) to improve the electronic conductivity. The PtRu/Sb-SnO2 + AB catalyst exhibited the best electrocatalytic activity and thermal stability towards the fully hydrolysed POMM3 and formaldehyde oxidations, for which the mass activity was about ten times higher than that for methanol.  相似文献   

16.
This work employs a novel technique in which laponite clay-modified gold electrodes are used as the anode for direct methanol fuel cells. The platinum/laponite clay (Pt/Clay) films on indium tin oxide electrode were characterized by using scanning electron microscope and energy-dispersive X-ray spectroscopy. Various contents of laponite clay (0.1, 0.5, 1.0, and 2.0?wt%) with constant platinum (Pt) catalyst content on modified gold electrodes were studied as an anode catalyst for methanol oxidation. The catalyst poisoning was observed as a function of time. The 1.0?wt% Pt/Clay-modified gold electrode shows the highest activity for methanol oxidation, 27.73?% higher than Pt only modified gold electrode at 2.5?min. The peak current of 1?% Pt/Clay-modified gold electrode is 3.50?% higher than the peak current of Pt only modified gold electrode at 57.5?min. The higher content of Pt/Clay-modified gold electrode shows strong resistance to catalyst poisoning. The Pt/Clay-modified gold electrode is a new and promising electrode for a direct methanol fuel cell and can replace existing commercial catalysts.  相似文献   

17.
《Electrochimica acta》1985,30(11):1465-1471
Using fast linear sweep voltammetry, the adsorption behaviour of formaldehyde, formic acid and methanol was studied on an electrochemically modified (100)-like Pt electrode without or covered with UPD-lead. It was found that both the lead inhibits the formation of strongly bound intermediates and the intermediates inhibit the deposition of lead. This is explained by a mutual hindrance after the “third body” concept. This cannot explain, however, the electrocatalytic effect of UPD-lead on the oxidation of the above fuels since this effect has its maximum at θPb > 0.5. Therefore, we postulate that UPD-lead catalyzes the direct oxidation of formic acid and formaldehyde at potentials between 0.2 and 0.7 V. On the other hand, the direct oxidation of methanol on smooth Pt occurs at potentials more positive than 0.6 V where UPD-lead is already anodically dissolved. Therefore, only a small catalytic effect of UPD-lead on methanol oxidation is observed.  相似文献   

18.
A H2 plasma has been used to treat the PtRu nanoparticles supported on the plasma functionalized multi-walled carbon nanotubes (PtRu/PS-MWCNTs). The plasma treatment does not change the size and crystalline structure of PtRu nanoparticles, but reduces the fraction of the oxidized species at the outermost perimeter of particles. The electrochemical results show that these plasma treated PtRu/PS-MWCNTs exhibit increased electrochemically active surface area, improved electrocatalytic activity and long term stability toward methanol and formic acid oxidation, and enhanced tolerance to carbonaceous species relative to the sample untreated with the H2 plasma. The electrocatalytic activities of the plasma treated PtRu/PS-MWCNTs are found to be dependent upon the Pt:Ru atomic ratios of PtRu nanoparticles. The catalysts with a Pt:Ru atomic ratio close to 1:1 show superior properties in the electrooxidation of methanol and formic acid at room temperature and better tolerance to carbonaceous species.  相似文献   

19.
Oxidized and reduced carbon nanofibers (OCNF and RCNF) were used as supports to prepare highly dispersed PtRu catalysts for the direct methanol fuel cells (DMFC). The structural and surface features and electrocatalytic properties of bimetallic PtRu/OCNF and PtRu/RCNF were extensively investigated. FT-IR spectra show that carboxyl groups exist on the surface of the OCNF, which greatly influence the morphology and crystallinity of the electrocatalysts. Transmission electron microscopy and X-ray diffraction consistently show that PtRu/RCNF has a smaller particle size and more uniform distribution than PtRu/OCNF. However, both catalysts have very similar methanol oxidation peak current densities that are significantly lower than commercial catalyst based on current-voltage (CV) results. These two catalysts also give very similar single cell performance except for some difference in the resistance polarization region. The OCNF supported catalysts give better performance than commercial catalysts when current density is higher than 50 mA cm−2 in spite of low methanol oxidation peak current density. These results can be ascribed to the specific surface and structural properties of carbon nanofibers.  相似文献   

20.
PtRu and Pt nanoparticles were deposited on the surface of multiwalled carbon nanotubes (MWCNTs) with the assistance of phosphomolybdic acid (PMo) by a one-pot hydrothermal reduction strategy. Transmission electron microscopy shows a high-density PtRu (or Pt) nanoparticles uniformly dispersed on the surface of the MWCNTs with an average diameter of 1.8 nm for PtRu nanoparticles and 2.4 nm for Pt nanoparticles. Moreover, the as-prepared PMo/PtRu/MWCNT and PMo/Pt/MWCNT electrocatalysts are highly electroactive for the electrochemical oxidation of methanol. Cyclic voltammograms show a high electrochemical surface area (ESA) and a large current density for methanol oxidation at the modified electrode by PMo/PtRu/MWCNT and PMo/Pt/MWCNT electrocatalysts. Electrochemical impedance spectroscopy reveals a high CO tolerance for PMo/PtRu/MWCNT and PMo/Pt/MWCNT electrocatalysts in the electrochemical catalysis of methanol oxidation. For comparison, PtRu/MWCNT and Pt/MWCNT electrocatalysts were prepared in control experiments without PMo. The results demonstrate that PtRu and Pt nanoparticles deposited on MWCNTs in the presence of PMo were superior to those on MWCNTs without PMo in several respects including: (1) a smaller size and a higher dispersion; (2) a higher ESA; (3) a larger current density for methanol oxidation; (4) a higher tolerance for CO poisoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号