首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
A thermodynamic modeling of phase diagrams in binary alkali silicate systems is described by using the Gibbs free energy of the phases. Simple models employing regular, quasi-regular, and subregular solution models were applied to describe the liquid phase. The interaction parameters of the liquid phases were obtained by using the liquidus curves of silica (and subliquidus data) through a multiple linear regression method. The present calculated liquidus curves agree very well with Cs2O—SiO2 and Rb2O—SiO2 systems. In the K2O—, Na2O—, and Li2O—SiO2 systems, the calculations permitted discrimination between sets of data and, based upon the calculation choices, could be correctly made to select the most appropriate phase diagram. Also, the spinodals were calculated where phase separation can occur by a spinodal decomposition process.  相似文献   

2.
A phase equilibrium study of the join lithium metasilicate–β–eucryptite in the system Li2O–Al2O3–SiO2 was made by the quench method. The phase diagram was found to be a simple binary with a eutectic at 1070°C and 57% eucryptite. The relationship of these data to the ternary system is discussed.  相似文献   

3.
In this study, the isothermal section of a Cu2O–Al2O3–SiO2 pseudo-ternary phase diagram at 1150°C was analyzed by means of a scanning electronic microscope and powder X-ray diffraction of the quenched samples qualitatively, and the compositions of the tie-points of the tie-planes as well as their regions were determined by in situ high-temperature quantitative X-ray diffraction analysis and energy-dispersive X-ray spectroscopy. Then, the isothermal section of the Cu2O–Al2O3–SiO2 pseudo-ternary phase diagram at 1150°C was constructed; it was found that the isothermal section is composed of two single liquid-phase regions, five two-phase regions, and six three-phase regions.  相似文献   

4.
The interaction of molten salts of different Na2O activities and mullite is examined with furnace and burner tests. The more-acidic molten salts form small amounts of Al2O3; the more-basic molten salts form various Na2O–Al2O3–SiO2 compounds. The results are interpreted using the Na2O–Al2O3–SiO2 ternary phase diagram, and some possible diffusion paths are discussed. The generally higher melting points of Na2O–Al2O3–SiO2 compounds lead to better behavior of mullite in molten salts, as compared to SiO2-protected ceramics such as SiC. Mullite-coated SiC is discussed, and the corrosion behavior is evaluated.  相似文献   

5.
The thermodynamic data for the Y2O3–BaO–Cu2O–CuO quaternary system were optimized from measured thermodynamic data. A two-sublattice model for ionic solution was used to express the Gibbs free energy of the liquid phase, and a two-sublattice regular solution model was used for the nonstoichiometric YBa2Cu3O6+δ superconducting compound. The optimized thermodynamic data were used to calculate the phase diagrams of the Cu2O–CuO binary system and the CuO x –Y2Cu2O5 and CuO x –BaCuO2 quasi-binary systems. The results were in good agreement with reported measured data. The liquidus projection and isothermal and vertical sections of the Y2O3–BaO-CuO x quasi-ternary system were calculated. The effect of oxygen pressure on some reaction temperatures was predicted by calculating them at various oxygen pressures, and the oxygen contents (6 +δ) in YBa2Cu3O6+δ were calculated at various temperatures and oxygen pressures. The results were compared with experimental data.  相似文献   

6.
7.
These ternary systems are limiting faces, respectively, of the volumes leucite-corundum-spinel-silica and leucite-forsterite-spinel-silica in the quaternary system K2O–MgO–Al2O3–SiO2. The results of quenching experiments on these two ternary systems and on the binary system spinel-leucite are given here. The relation of the system leucite-corundum-spinel to the volume leucite-corundum-spinel-K2O·Al2O3·2SiO2 is indicated. The data presented are of general interest to the geologist and provide basic information which can be applied to refractories and slags by the ceramist and metallurgist. Some observations are made on the refractoriness and changes in refractoriness of certain mixtures of ceramic materials.  相似文献   

8.
9.
The Rayleigh scattering of the mixed-alkali glass system K2O–Na2O–MgO–SiO2 (KNMS) was investigated, both experimentally and theoretically. The lowest Rayleigh scattering coefficient (38% of that for pure SiO2 glass) was obtained when the glass composition was 22K2O–8Na2O–10MgO–60SiO2 (in mol%). These values are equal to or less than the minimum values reported for the ternary sodium silicate glass Na2O–MgO–SiO2. The Rayleigh scattering caused by concentration fluctuation was believed to have been reduced greatly in this KNMS glass, because the mobility of the alkali-metal ions was reduced by the mixed-alkali effect.  相似文献   

10.
The stability of the vitreous state in the lithium metasilicate region of the system Li2O–Al2O3–SiO2 was found to be a function of the concentration of lithia. The higher the lithia content, the less stable was the glass. The devitrification of glasses in this system was studied. In addition to the phases present at or near the liquidus, it was found that the β -eucryptite– β -quartz solid solution phase was metastable over most of the region. The Li2O–SiO2, β -Li2O–Al2O3–4SiO2 solid solution, β -Li2O–Al2O3–2SiO2 solid solution triple point was estimated to be near 62.5% SiO2, 17% Al2O3, and 20.5% Li2O (by weight). The thermal expansions of bodies in this region were measured and the values obtained are explained in terms of the phases present.  相似文献   

11.
Activity of Nickel(II) Oxide in Silicate Melts   总被引:1,自引:0,他引:1  
Activity–composition relations of NiO have been determined at 1435°C in melts of the system CaO–NiO–SiO2 and at 1400°C in melts of the systems CaO–MgO–NiO–SiO2, CaO–MgO–NiO–Al2O3–SiO2, and CaO–MgO–NiO–K2O–SiO2. In the CaO–NiO–SiO2 and CaO–MgO–NiO–SiO2 systems the activity coefficient of NiO (γNiO) decreases as the polymerization of the melt increases (basicity decrease). γNiO stays contant up to several weight percent NiO for melts with similar basicity, an indication of Henry's law behavior. Minima in the NiO activity coefficient are observed in melts of the CaO–MgO–NiO–Al2O3–SiO2 and CaO–MgO–NiO–K2O–SiO2 systems at NBO/Si ratios between 1.0 and 1.5; i.e., γNiO decreases with decreasing basicity for NBO/Si ratios >1.5 and increases with decreasing basicity for melts with NBO/Si ratios <1.0 (NBO/Si; nonbridging oxygens per silicon). The addition of Al2O3 and K2O to the CaO–MgO–NiO–SiO2 system results in an increase in the activity coefficient of NiO.  相似文献   

12.
A modified associate species approach is used to model the liquid phase in oxide systems. The relatively simple technique treats oxide liquids as solutions of end-member and associate species. The model is extended to representing glasses by treating them as undercooled liquids. Equilibrium calculations using the model allow the determination of species activities, phase separation, precipitation of crystalline phases, and volatilization. In support of nuclear waste glass development, a model of the Na2O–Al2O3–B2O3–SiO2 system has been developed that accurately reproduces its phase equilibria. The technique has been applied to the CaO–SiO2 system, which is used to demonstrate how two immiscible liquids can be treated.  相似文献   

13.
Differential thermal analysis and quenching experiments were used to establish the ternary phase diagram CaO-CaF2-2CaO.SiO2. Hermetically-closed platinum capsules were used to prevent fluorine loss in the form of HF, SiF4, and CaF2 by reaction of the CaF2 with water vapor or SiO2, or by evaporation. The melting point of pure CaF2 was 1419°± 1°C. There is one binary eutectic in the system CaO-CaF2 and there are two ternary eutectics in the system CaO-CaF2-2CaO.SiO2. The results of the present study were combined with literature data to construct the phase diagram CaO-CaF2-SiO2.  相似文献   

14.
We report on thermodynamic modeling and experimental studies of the reaction of oxygen with the 4H- and 6H-SiC surfaces at high temperatures T . It is observed that this reaction leads to the growth of passivating SiO2 layers at high pressures P (O2), etching of the surface at lower P (O2), and enhancement of the surface segregation of carbon at still lower P (O2). A unified P (O2)– T phase diagram for the reaction of O2 with SiC is presented and a thermodynamic model predicting these three distinct reaction regions is described. Evidence for the thermal decomposition of the SiO2 layer due to its reaction with the SiC substrate is also presented.  相似文献   

15.
The Li2O–B2O3 quasi-binary system is assessed. A two-sublattice ionic solution model, (Li1+) P (O2−, BO33−, B4O72−, B3O4.5) Q , is adopted to describe the liquid phase. All solid phases are treated as stoichiometric compounds. A set of parameters consistent with most of the available experimental data on phase diagram and thermodynamic properties is obtained by using the CALPHAD technique.  相似文献   

16.
Phase relations in the system Li2O–B2O3–SiO2 were studied by quenching and solid-state reactions. No ternary compounds were detected in the portion of the system containing less than 53% Li2O. Compatibility triangles were formed from the binary borate and silicate compounds. Liquidus data obtained by quenching are reported for four joins, Li2O·2SiO2–Li2O·2B2O3, Li2O·SiO2-Li2O·2B2O3, Li2O·SiO2-Li2O·B2O3, and Li2O·2B2O3-SiO2. The last join cuts across the two-liquid region and is not a true binary system. Some probable ternary invariant points were located in the portion of the system which was quenchable to glass and adjacent to the two-liquid region. Further data on the previously reported immiscible liquid formation are given and the significance is discussed. Data on the thermal expansion behavior of certain glasses are presented.  相似文献   

17.
The density fluctuations contributing to light scattering in a glass are governed by the flctive temperature of the glass and the equilibrium compressibility of the melt. Using ultrasonic velocity data for K2O–SiO2 melts, these compressibilities were evaluated, and the magnitude of the density fluctuations were calculated. In this system, the mean–square amplitude of the fluctuations reaches a minimum value (about half that of pure SiO2) for a composition of ∼20 mol% K2O. By extrapolating the equilibrium compressibilities to zero K2O content, the density fluctuations can be calculated for pure SiO2 glass; this calculation agrees well with the result obtained from light–scattering measurements.  相似文献   

18.
Solubility in the fully hydrated CaO–SiO2–H2O system can be best described using two ideal C-S-H-(I) and C-S-H-(II) binary solid solution phases. The most recent structural ideas about the C-S-H gel permit one to write stoichiometries of polymerized C-S-H-(II) end-members as hydrated precursors of the stable tobermorite and jennite minerals in the form of 5Ca(OH)2·6SiO2·5H2O and 10Ca(OH)2·6SiO2·6H2O, respectively. For thermodynamic modeling purposes, it is more convenient to express the number of basic silica and portlandite units in these stoichiometries using the coefficients n Si and n Ca. Thermodynamic solid-solution aqueous-solution equilibrium modeling by applying the Gibbs energy minimization (GEM) approach shows the best generic fits to the available experimental solubility data at solid 0.8 < Ca/Si < 2.0 if both stoichiometry and thermodynamic constants of the end-members are normalized to n Si= 1.0 ± 0.3. Recommended stoichiometries and thermodynamic data for the C-S-H end-members provide a reliable basis for the subsequent multicomponent extension of the ideal C-S-H solid solution model by incorporation of end-members for the (radio)toxic elements or trace metals.  相似文献   

19.
The radial distribution functions of ZnO–K2O–SiO2 glasses with 7 and 10 wt% ZnO are compared with that of the corresponding K2O–SiO2 matrix leading to "difference distribution curves'representative of the zinc structural arrangement. Analysis of the curves indicates that Zn2+ ions are prevalent (65% to 80%) in the glasses in tetracoordinated form.  相似文献   

20.
Equilibrium relations in the system NiO–TiO2–SiO2 in air have been investigated in the temperature range 1430° to 1660°C. The most conspicuous feature of the phase relations is the existence of a cation-excess spinel-type phase, in addition to NiO and NiTiO3, on the liquidus surface and at subsolidus temperatures down to 1430°C. Three invariant points have been located on the liquidus. There is a peritectic at 1540°C characterized by coexisting NiO ( ss ), spinel( ss ), cristobalite, and liquid of composition 47 wt% NiO, 29 wt% TiO2, and 24 wt% SiO2. Two eutectics are present, one at 1480°C, with spinel( ss ), NiTiO3, cristobalite, and liquid (42 wt% NiO, 43 wt% TiO2, and 15 wt% SiO2), as the coexisting phases. The other is at 1490°C with NiTiO3, rutile, cristobalite, and liquid (32 wt% NiO, 56 wt% TiO2, and 12 wt% SiO2). A liquid miscibility gap extends across the diagram from the two bounding binary systems NiO–SiO2 and TiO2–SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号