首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Graphs with nonuniform nodes arise naturally in many real-world applications. Although graph drawing has been a very active research in the computer science community during the past decade, most of the graph drawing algorithms developed thus far have been designed for graphs whose nodes are represented as single points. As a result, it is of importance to develop drawing methods for graphs whose nodes are of different sizes and shapes, in order to meet the need of real-world applications. To this end, a potential field approach, coupled with an idea commonly found in force-directed methods, is proposed in this paper for drawing graphs with nonuniform nodes in 2-D and 3-D. In our framework, nonuniform nodes are uniformly charged, while edges are modelled by springs. Using certain techniques developed in the field of potential-based path planning, we are able to find analytically tractable procedures for computing the repulsive force and torque of a node in the potential field induced by the remaining nodes. The crucial feature of our approach is that the rotation of every nonuniform node and the multiple edges between two nonuniform nodes are taken into account. In comparison with the existing algorithms found in the literature, our experimental results suggest this new approach to be promising, as drawings of good quality for a variety of moderate-sized graphs in 2-D and 3-D can be produced reasonably efficiently. That is, our approach is suitable for moderate-sized interactive graphs or larger-sized static graphs. Furthermore, to illustrate the usefulness of our new drawing method for graphs with zero-sized nodes, we give an application to the visualization of hierarchical clustered graphs, for which our method offers a very efficient solution.  相似文献   

2.
An orthogonal drawing of a graph is an embedding of the graph in the rectangular grid, with vertices represented by axis-aligned boxes, and edges represented by paths in the grid that only possibly intersect at common endpoints. In this paper we study three-dimensional orthogonal drawings and provide lower bounds for three scenarios: (1) drawings where the vertices have a bounded aspect ratio, (2) drawings where the surfaces of vertices are proportional to their degrees, and (3) drawings without any such restrictions. Then we show that these lower bounds are asymptotically optimal, by providing constructions that in all scenarios match the lower bounds within a constant factor.  相似文献   

3.
In this paper we consider the problem of on-line graph coloring. In an instance of on-line graph coloring, the nodes are presented one at a time. As each node is presented, its edges to previously presented nodes are also given. Each node must be assigned a color, different from the colors of its neighbors, before the next node is given. LetA(G) be the number of colors used by algorithmA on a graphG and letx(G) be the chromatic number ofG. The performance ratio of an on-line graph coloring algorithm for a class of graphsC is maxG C(A(G)/(G)). We consider the class ofd-inductive graphs. A graphG isd-inductive if the nodes ofG can be numbered so that each node has at mostd edges to higher-numbered nodes. In particular, planar graphs are 5-inductive, and chordal graphs arex(G)-inductive. First Fit is the algorithm that assigns each node the lowest-numbered color possible. We show that ifG isd-inductive, then First Fit usesO(d logn) colors onG. This yields an upper bound ofo(logn) on the performance ratio of First Fit on chordal and planar graphs. First Fit does as well as any on-line algorithm ford-inductive graphs: we show that, for anyd and any on-line graph coloring algorithmA, there is ad-inductive graph that forcesA to use (d logn) colors to colorG. We also examine on-line graph coloring with lookahead. An algorithm is on-line with lookaheadl, if it must color nodei after examining only the firstl+i nodes. We show that, forl/logn, the lower bound ofd logn colors still holds.This research was supported by an IBM Graduate Fellowship.  相似文献   

4.
Symmetry is one of the most important aesthetic criteria in graph drawing because it reveals the structure in the graph. This paper discusses symmetric drawings of biconnected planar graphs. More specifically, we discuss geometric automorphisms, that is, automorphisms of a graph G that can be represented as symmetries of a drawing of G. Finding geometric automorphisms is the first and most difficult step in constructing symmetric drawings of graphs. The problem of determining whether a given graph has a non-trivial geometric automorphism is NP-complete for general graphs. In this paper we present a linear time algorithm for finding planar geometric automorphisms of biconnected planar graphs. A drawing algorithm is also discussed.  相似文献   

5.
In this paper, we first show how a certain ordering of vertices, called bicompatible elimination ordering (BCO), of a proper interval graph can be used to solve efficiently several problems in proper interval graphs. We, then, propose an NC parallel algorithm (i.e., polylogarithmic-time employing a polynomial number of processors) in SIMD CRCW PRAM (Single Instruction Stream Multiple Data Stream Concurrent Read Concurrent Write Parallel Random Access Machine) model of parallel computation to compute a BCO of a proper interval graph. To the best of our knowledge, this is the first NC parallel algorithm to compute a BCO of a proper interval graph.  相似文献   

6.
A new decomposition scheme for bipartite graphs namely canonical decomposition was introduced by Fouquet et al. [Internat. J. Found. Comput. Sci. 10 (1999) 513-533]. The so-called weak-bisplit graphs are totally decomposable following this decomposition. We present here some optimization problems for general bipartite graphs which have efficient solutions when dealing with weak-bisplit graphs.  相似文献   

7.
The class of bipartite permutation graphs is the intersection of two well known graph classes: bipartite graphs and permutation graphs. A complete bipartite decomposition of a bipartite permutation graph is proposed in this note. The decomposition gives a linear structure of bipartite permutation graphs, and it can be obtained in O(n) time, where n is the number of vertices. As an application of the decomposition, we show an O(n) time and space algorithm for finding a longest path in a bipartite permutation graph.  相似文献   

8.
Xin He 《Algorithmica》1995,13(6):553-572
We present an efficient parallel algorithm for constructing rectangular duals of plane triangular graphs. This problem finds applications in VLSI design and floor-planning problems. No NC algorithm for solving this problem was previously known. The algorithm takesO(log2 n) time withO(n) processors on a CRCW PRAM, wheren is the number of vertices of the graph.This research was supported by NSF Grants CCR-9011214 and CCR-9205982.  相似文献   

9.
Given a graph G, a spanning subgraph H of G   and an integer λ≥2λ2, a λ-backbone coloring of G with backbone H is a proper vertex coloring of G   using colors 1,2,…1,2,, in which the color difference between vertices adjacent in H is greater than or equal to λ. The backbone coloring problem is that of finding such a coloring whose maximum color does not exceed a given limit k  . In this paper, we study the backbone coloring problem for bounded-degree graphs with connected backbones and we give a complete computational complexity classification of this problem. We present a polynomial algorithm for optimal backbone coloring for subcubic graphs with arbitrary backbones. We also prove that the backbone coloring problem for graphs with arbitrary backbones and with fixed maximum degree (at least 4) is NP-complete. Furthermore, we show that for the special case of graphs with fixed maximum degree at least 5 and λ≥4λ4 the problem remains NP-complete even for spanning tree backbones.  相似文献   

10.
Many questions regarding the Tower of Hanoi problem have been posed and answered during the years. Variants of the classical puzzle, such as allowing more than 3 pegs, and imposing limitations on the possible moves among the pegs, raised the analogous questions for those variants. One such question is: given a variant, and a certain number of disks, find a pair of disk arrangements such that the minimal number of moves required for changing from the first to the second is maximal over all pairs. One of the main results of the paper is identifying these for the Cyclich variants—the variants with h pegs arranged along a uni-directional circle—to be the pairs of perfect configurations where the destination peg is right before the source peg.  相似文献   

11.
The all-bidirectional-edges problem is to find an edge-labeling of an undirected networkG=(V, E), with a source and a sink, such that an edgee=uv inE is labeled u, v or u, u (or both) depending on the existence of a (simple) path from the source to the sink traversinge, that visits the verticesu andv in the orderu, v orv, u respectively. The best-known algorithm for this problem requiresO(¦V¦·¦E¦) time [5]. We show that the problem is solvable optimally on a planar graph.  相似文献   

12.
A minus (respectively, signed) clique-transversal function of a graph G=(V,E) is a function (respectively, {−1,1}) such that uCf(u)?1 for every maximal clique C of G. The weight of a minus (respectively, signed) clique-transversal function of G is f(V)=vVf(v). The minus (respectively, signed) clique-transversal problem is to find a minus (respectively, signed) clique-transversal function of G of minimum weight. In this paper, we present a unified approach to these two problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. We also prove that the signed clique-transversal problem is NP-complete for chordal graphs and planar graphs.  相似文献   

13.
Finding a dominating set of minimum cardinality is an NP-hard graph problem, even when the graph is bipartite. In this paper we are interested in solving the problem on graphs having a large independent set. Given a graph G with an independent set of size z, we show that the problem can be solved in time O(2nz), where n is the number of vertices of G. As a consequence, our algorithm is able to solve the dominating set problem on bipartite graphs in time O(2n/2). Another implication is an algorithm for general graphs whose running time is O(n1.7088).  相似文献   

14.
The square H2 of a graph H is obtained from H by adding new edges between every two vertices having distance two in H. Lau and Corneil [Recognizing powers of proper interval, split and chordal graphs, SIAM J. Discrete Math. 18 (2004) 83-102] proved that recognizing squares of split graphs is an NP-complete problem. In contrast, we show that squares of strongly chordal split graphs can be recognized in quadratic-time by giving a structural characterization of these graph class.  相似文献   

15.
A t-spanner of a graph G is a spanning subgraph S in which the distance between every pair of vertices is at most t times their distance in G. If S is required to be a tree then S is called a tree t-spanner of G. In 1998, Fekete and Kremer showed that on unweighted planar graphs deciding whether G admits a tree t-spanner is polynomial time solvable for t?3 and is NP-complete when t is part of the input. They also left as an open problem if the problem is polynomial time solvable for every fixed t?4. In this work we resolve the open question of Fekete and Kremer by proving much more general results:
  • • 
    The problem of finding a t-spanner of treewidth at most k in a given planar graph G is fixed parameter tractable parameterized by k and t. Moreover, for every fixed t and k, the running time of our algorithm is linear.
  • • 
    Our technique allows to extend the result from planar graphs to much more general classes of graphs. An apex graph is a graph that can be made planar by the removal of a single vertex. We prove that the problem of finding a t-spanner of treewidth k is fixed parameter tractable on graphs that do not contain some fixed apex graph as a minor, i.e. on apex-minor-free graphs. The class of apex-minor-free graphs contains planar graphs and graphs of bounded genus.
  • • 
    Finally, we show that the tractability border of the t-spanner problem cannot be extended beyond the class of apex-minor-free graphs and in this sense our results are tight. In particular, for every t?4, the problem of finding a tree t-spanner is NP-complete on K6-minor-free graphs.
  相似文献   

16.
17.
A graph G is 1-planar if it can be embedded in the plane in such a way that each edge crosses at most one other edge. Borodin showed that 1-planar graphs are 6-colorable, but his proof does not lead to a linear-time algorithm. This paper presents a linear-time algorithm for 7-coloring 1-plane graphs (which are 1-planar graphs already embedded in the plane). The main difficulty in the design of our algorithm comes from the fact that the class of 1-planar graphs is not closed under the operation of edge contraction. This difficulty is overcome by a structural lemma that may be useful in other problems on 1-planar graphs. This paper also shows that it is NP-complete to decide whether a given 1-planar graph is 4-colorable. The complexity of the problem of deciding whether a given 1-planar graph is 5-colorable is still unknown.  相似文献   

18.
D. Harel  M. Sardas 《Algorithmica》1998,20(2):119-135
We present a new algorithm for drawing planar graphs on the plane. It can be viewed as a generalization of the algorithm of Chrobak and Payne, which, in turn, is based on an algorithm by de Fraysseix, Pach, and Pollack. Our algorithm improves the previous ones in that it does not require a preliminary triangulation step; triangulation proves problematic in drawing graphs ``nicely,' as it has the tendency to ruin the structure of the input graph. The new algorithm retains the positive features of the previous algorithms: it embeds a biconnected graph of n vertices on a grid of size (2n-4) x (n-2) in linear time. We have implemented the algorithm as part of a software system for drawing graphs nicely. Received September 21, 1995; revised March 15, 1996.  相似文献   

19.
Symmetry is one of the most important aesthetic criteria in graph drawing because it reveals structure in the graph. This paper discusses symmetric drawings of oneconnected planar graphs. More specifically, we discuss planar (geometric) automorphisms, that is, automorphisms of a graph G that can be represented as symmetries of a planar drawing of G. Finding planar automorphisms is the first and most difficult step in constructing planar symmetric drawings of graphs. The problem of determining whether a given graph has a nontrivial geometric automorphism is NP-complete for general graphs. The two previous papers in this series have discussed the problem of drawing planar graphs with a maximum number of symmetries, for the restricted cases where the graph is triconnected and biconnected. This paper extends the previous results to cover planar graphs that are oneconnected. We present a linear time algorithm for drawing oneconnected planar graphs with a maximum number of symmetries.  相似文献   

20.
On maximum induced matchings in bipartite graphs   总被引:1,自引:0,他引:1  
The problem of finding a maximum induced matching is known to be NP-hard in general bipartite graphs. We strengthen this result by reducing the problem to some special classes of bipartite graphs such as bipartite graphs with maximum degree 3 or C4-free bipartite graphs. On the other hand, we describe a new polynomially solvable case for the problem in bipartite graphs which deals with a generalization of bi-complement reducible graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号