首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以硝酸铜和硝酸铈为原料,采用共沉淀法制备系列Cu/CeO_2催化剂。并用物理吸附(BET)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)对催化剂的结构和还原性进行了表征,考察了其在二乙醇胺脱氢制亚氨基二乙酸反应中的催化性能。结果表明,经500℃焙烧、铜铈物质的量比为3∶1的Cu_3Ce_1催化剂还原温度最低,为230℃,且Cu_3Ce_1还原后表面有适量Cu活性中心,Cu_3Ce_1催化剂在二乙醇胺(DEA)脱氢制亚氨基二乙酸的反应中具有较好催化活性。该催化剂最适宜的反应条件为:m(DEA)∶m(Na OH)∶m(H2O)=1.15∶1.00∶2.42,催化剂用量6 g,反应温度180℃,反应压力1.1 MPa,反应时间4 h,搅拌转速600 r/min,Cu_3Ce_1催化剂上二乙醇胺的转化率为99.63%,亚氨基二乙酸选择性为95.73%,Cu_3Ce_1催化剂重复使用9次,无明显失活。  相似文献   

2.
《应用化工》2017,(4):663-667
采用室温固相研磨法制备原位还原Cu/ZnO催化剂,并将其用于CO_2加氢合成甲醇反应。利用XRD、BET、TG-DTG等手段对催化剂性能进行了表征,利用高压固定床反应装置对催化剂活性进行了评价,考察了甲酸用量、焙烧温度及升温速率等条件对催化剂性能的影响。结果表明,室温固相研磨得到的前驱体在N_2中焙烧,前驱体氧化分解和还原活化一步完成,无需外加H_2还原,直接制得了原位还原Cu/ZnO催化剂。随甲酸用量、焙烧温度、升温速率增加,催化活性呈现先增加后减小趋势。Cu/Zn摩尔比为1∶1和HCOOH/(Cu+Zn)摩尔比11∶1,前驱体于N_2中焙烧温度573 K和升温速率3 K/min时,制得的原位还原Cu/ZnO催化剂在CO_2加氢合成甲醇反应中呈现最佳活性,CO_2转化率和甲醇产率分别达到了33.44%和28.17%。与空气中焙烧再外加5%H_2还原的Cu/ZnO催化剂相比,原位还原Cu/ZnO催化剂比表面积较高,Cu~0粒径较小,催化活性较高。  相似文献   

3.
采用共沉淀法制备了系列掺杂Mg2+离子的Cu-Mg/ZnO[n(Cu)∶n(Zn)=5∶4]催化剂,并用N2吸附-脱附、XRD和H2-TPR等对催化剂进行表征,考察焙烧温度对催化剂结构及其催化草酸二甲酯加氢反应性能的影响。结果表明,经350℃焙烧所得Cu-Mg/ZnO-c350催化剂具有较大的比表面积,发达的介孔结构,较高的Cu物种分散性和较多的表面Cu0活性位;而较高的焙烧温度导致催化剂中纳米粒子聚集烧结,降低催化剂比表面积、孔径尺度和表面Cu0活性物种数量。适宜反应条件,Cu-Mg/ZnO-c350催化剂催化草酸二甲酯气相加氢反应转化率为100%,乙二醇收率为95%。此外,较强的金属-载体作用力抑制铜活性物种的抗烧结能力,赋予其优异的稳定性。  相似文献   

4.
采用溶胶凝胶法和共沉淀法制备了2种不同的Cu O-CeO_2-ZrO_2催化剂,并在不同的温度(400℃,500℃和600℃)下进行焙烧,利用X射线衍射(XRD)、程序升温还原(H2-TPR)技术对所制备的催化剂进行了表征,考察了催化剂的CO氧化性能。研究结果表明,共沉淀法制备的Cu O-CeO_2-ZrO_2催化剂的CO氧化活性明显高于溶胶凝胶法制备的催化剂,共沉淀法制备的催化剂表面高分散Cu O的颗粒较大、活性位最多,当焙烧温度为500℃时,CO完全转化时的温度仅为90℃。  相似文献   

5.
《应用化工》2022,(4):663-667
采用室温固相研磨法制备原位还原Cu/ZnO催化剂,并将其用于CO_2加氢合成甲醇反应。利用XRD、BET、TG-DTG等手段对催化剂性能进行了表征,利用高压固定床反应装置对催化剂活性进行了评价,考察了甲酸用量、焙烧温度及升温速率等条件对催化剂性能的影响。结果表明,室温固相研磨得到的前驱体在N_2中焙烧,前驱体氧化分解和还原活化一步完成,无需外加H_2还原,直接制得了原位还原Cu/ZnO催化剂。随甲酸用量、焙烧温度、升温速率增加,催化活性呈现先增加后减小趋势。Cu/Zn摩尔比为1∶1和HCOOH/(Cu+Zn)摩尔比11∶1,前驱体于N_2中焙烧温度573 K和升温速率3 K/min时,制得的原位还原Cu/ZnO催化剂在CO_2加氢合成甲醇反应中呈现最佳活性,CO_2转化率和甲醇产率分别达到了33.44%和28.17%。与空气中焙烧再外加5%H_2还原的Cu/ZnO催化剂相比,原位还原Cu/ZnO催化剂比表面积较高,Cu0粒径较小,催化活性较高。  相似文献   

6.
分别采用浸渍法、沉积沉淀法和共沉淀法制备了Cu/SiO_2催化剂,利用低温N2物理吸附、XRD、H2-TPR等手段对其进行表征,并研究了该催化剂催化对羟基苯乙酸乙酯加氢的性能。结果表明,制备方法对Cu/SiO_2催化剂中Cu物种分散行为及还原性能有较大影响,进而使催化剂表现出不同的加氢活性。采用共沉淀法制备的Cu/SiO_2催化剂,活性物种Cu物种高度分散,且易于还原,表现出最佳的加氢活性,在催化剂用量为m(对羟基苯乙酸乙酯)∶m(催化剂)=25∶2.5,反应温度170℃,反应压力4MPa,反应时间15h条件下,对羟基苯乙醇收率达到99.2%。  相似文献   

7.
赵维  李旭  王锐  李得君 《应用化工》2014,(12):2313-2315
采用共沉淀水热合成锌铝类水滑石(Zn Al-HTLcs)和锌铝铈三元类水滑石(Zn Al Ce-HTLcs)。并利用XRD对不同条件下合成产物进行物相分析。实验结果表明,在M2+∶M3+=2,Ce3+∶Al3+=0.25,p H=5.8~6.5下,进行多种离子共沉淀,均能合成结构单一的Zn Al-HTLcs和Zn Al Ce-HTLcs。并以此为前驱体经一定温度焙烧后得到复合金属氧化物催化剂,研究了催化剂在乙酸戊醇酯化反应中的应用。当M2+∶M3+为2,Ce3+∶Al3+为0.25条件下,催化剂在实验条件下均具有较好的催化活性,其中经500℃下焙烧的催化剂,乙酸的转化率最高可达78.7%。  相似文献   

8.
以Cu-Zn-Al和Cu-Mg-Al类水滑石为前体经焙烧、还原制备了铜基催化剂,采用XRD、H2-TPR、N2吸附、H2-TPD、NH3-TPD、CO2-TPD及活性评价等方法,研究了M2+离子(M2+=Zn2+或Mg2+)及n(M2+)/n(Al3+)比对催化剂结构和甘油氢解反应性能的影响。结果表明,经450℃焙烧后,类水滑石转变为由尖晶石和/或氧化物组成的氧化态前驱体,再经270℃还原后制得高分散Cu催化剂。随氧化铝含量提高,催化剂比表面及酸量增加。Cu-Zn-Al催化剂表面氢吸附量大于CuMg-Al。Cu-Mg-Al催化剂碱性强于Cu-Zn-Al。Cu-Zn-Al[n(Cu)∶n(Zn)∶n(Al)=1∶1∶4]催化剂具有较佳甘油氢解活性及1,2-丙二醇选择性,这与其具有较多表面铜中心、较大酸量及Zn物种参与氢吸附有关。此外,Cu-Mg-Al催化剂表面铜中心和碱中心可能存在协同作用促进甘油氢解反应。  相似文献   

9.
改性Raney Cu催化一乙醇胺脱氢合成甘氨酸   总被引:4,自引:0,他引:4  
一乙醇胺在氢氧化钠的水溶液中〔w(NaOH)=12%~18%〕,用含有铬和锗等贵金属改性的RaneyCu催化剂脱氢合成甘氨酸。反应温度150~180℃,反应压力0 8~1 2MPa,反应时间2~4h。实验结果表明:改性RaneyCu催化剂比普通RaneyCu有更好的活性和使用寿命,使一乙醇胺的平均转化率从92%提高到97%,有效使用寿命(一乙醇胺的转化率≥90%)从5次延长到15次以上。  相似文献   

10.
采用浸渍法制备了一系列CuxZnyAlz催化剂,考察了催化剂焙烧温度和组成对甲醇水蒸汽转化制氢反应性能的影响, 用TG-DTA、XRD和SEM等方法对催化剂性能进行了表征.结果表明:400℃焙烧、Cu/Zn/Al配比(摩尔)为1:1:3.2时,制备的Cu1Zn1Al3.2催化剂具有良好催化性能;Cu1Zn1Al3.2催化剂较为适宜的反应工艺条件为:反应温度240~250℃,水/醇比1.1~1.3,液体质量空速1~2 h-1;甲醇转化率达到100%,二氧化碳选择性大于97%.本研究制备的Cu1Zn1Al3.2催化剂中CuO 含量仅为24.53%(质量),约为通常共沉淀法制备的Cu/Zn/Al催化剂的CuO 含量的50%,但Cu1Zn1Al3.2催化剂对甲醇水蒸汽转化制氢反应性能与共沉淀法相当.为甲醇水蒸汽转化制氢技术用于燃料电池用氢和中小规模制氢过程提供依据.  相似文献   

11.
甲基对苯二酚的合成   总被引:4,自引:0,他引:4  
用均匀设计法实验研究了对硝基甲苯与浓硫酸在催化剂作用下合成甲基对苯二酚的反应条件 ,考察了各种影响因素。优化出的工艺条件是 :各种物料的质量比m(对硝基甲苯 )∶m(浓硫酸 )∶m(水 )∶m(催化剂 ) =1∶7 6∶5 1 4∶0 2 6 8,催化剂加入时间为 45min ,反应温度为 83 4℃ ,反应时间为 5 0min。甲基对苯二酚的平均单程收率以对硝基甲苯计为 5 7 9%。  相似文献   

12.
碱焙烧法由氧化锌矿提取ZnO   总被引:1,自引:0,他引:1       下载免费PDF全文
采用氢氧化钠焙烧法处理氧化锌矿,可使矿物中的ZnO、SiO2和PbO发生反应溶于水得到混合溶液。本文采用正交实验优化了碱焙烧氧化锌矿提取氧化锌的的工艺条件,得到优化的工艺条件为矿碱质量比1:6、焙烧温度400℃、保温时间4h,在优化工艺条件下ZnO的提取率达到82.4%。提锌渣主要成分为超石英和Na2ZnSiO4等,Na2ZnSiO4的存在影响了ZnO的提取率进一步提高。提锌渣形貌不规则,颗粒大小不均。  相似文献   

13.
采用了H2 SO4,H3PO4,KOH ,N(C2 H5 ) 3四种催化剂催化苯酚与糠醛反应合成 4,4′ 亚糠基双酚。实验结果表明 ,N(C2 H5 ) 3的催化效果最好 ,当以异丁醇为溶剂 ,n(苯酚 )∶n[N(C2 H5 ) 3]=1 0 0∶0 .0 5 ,反应时间为 3.0h ,反应温度为 80℃时 ,合成产物 4,4′ 亚糠基双酚的收率最高 ,可达到 5 7.9%。并经实验测试其抗氧化性能优于BHT和双酚A ,在同等条件下用于猪油 ,加入BHT的样品在 15天后开始变质 ,而加入 4,4′ 亚糠基双酚的样品在 2 0d后还保持稳定 ;用于从废弃煤焦油中提取的燃料油中 ,加入BHT和双酚A的样品分别在 5d和 7d后开始变质 ,而加入 4,4′ 亚糠基双酚的油样在 10d后才开始有变质现象  相似文献   

14.
雷宏  林笑笑  侯昭胤 《化工学报》2012,63(1):127-132
引言Cu/ZnO/Al2O3催化剂近年来广泛应用于低压甲醇合成、二甲醚合成和水煤气变换等领域[1-2],该催化体系具有活性高、使用寿命长、反应温度及  相似文献   

15.
常温固相反应合成纳米氧化锌   总被引:17,自引:0,他引:17  
以ZnSO4·7H2 O和Na2 CO3 为原料 ,用室温固相化学反应首先合成出粒径为 12 7nm的前驱体碳酸锌 ,然后在 2 0 0℃热分解 ,经纯化后得到纳米氧化锌。经XRD和TEM检测 ,粒径为 6 0~12 .7nm。  相似文献   

16.
二异丁烯催化氢酯基化反应制异壬酸酯   总被引:1,自引:0,他引:1  
陈静  付宏祥  童进 《精细化工》2001,18(2):109-111
在吡啶 /八羰基二钴催化剂的作用下 ,以工业副产二异丁烯为原料 ,进行羰化反应一步合成异壬酸甲酯。考察了影响反应的主要因素 ,在n(吡啶 )∶n(钴 ) =1∶1时 ,确定出反应的最佳工艺条件为 :反应压力 6 0MPa ,反应温度 140℃ ,反应时间 12h ,异壬酸酯的收率和选择性分别达到 83%和 85 %。比较了几种不同吡啶类衍生物配体的催化氢酯基化反应活性。  相似文献   

17.
以等体积浸渍-焙烧-原位还原法制备Cu/SiO2>-ZnO催化剂,采用固定床管式反应器考察反应温度、H2与H2O2的通入量以及助剂ZnO含量对苯胺和乙二醇合成吲哚反应的影响.结果表明,反应温度325 ℃、H2流速65 Ml·min-1、H2O流速42 Ml·h-1和加入ZnO助剂质量分数为1.0%条件下,吲哚收率为91...  相似文献   

18.
以己二酸为原料,以732型阳离子交换树脂为催化剂,在85℃下与甲醇反应5.5 h,生成己二酸二甲酯,产率>98%;在反应器中装入20~40目粒度催化剂Cu/ZnO/Al2O3,己二酸二甲酯与氢气反应,控制温度在250℃,氢气操作压力2.5 MPa,氢酯摩尔比150∶1,己二酸二甲酯体积空速0.50 h-1。在此条件下反应,1,6-己二醇产率>96%。  相似文献   

19.
采用共沉淀法制备的Cu/ZnO催化剂成功应用于1,4-丁二醇合成吡咯的反应,利用气质、红外光谱对产物进行定性和定量分析,同时采用XRD、H2-TPR、N2O分解对Cu/ZnO催化剂的成分Cu0和ZnO的作用进行分析。实验研究表明,Cu0是该反应的催化活性中心,ZnO起到了分散和稳定铜颗粒的作用,这种作用是由于在催化剂制备过程中形成了CuZn(OH)2CO3和(CuZn)5(OH)6(CO3)2这两种前体导致的。尽管Cu0是该反应的催化活性中心,Cu/ZnO催化剂的催化活性与Cu0的比表面积不呈线性关系,该反应具有晶面敏感性。在常压、280 ℃、1,4-丁二醇的空速为0.46 h?1、氨醇摩尔比为1.1∶1条件下对催化剂进行评价,Cu/Zn摩尔比为1∶1时1,4-丁二醇的转化率为100%,吡咯有较佳的选择性为58%。  相似文献   

20.
对氨基苯酚的合成研究   总被引:4,自引:0,他引:4  
以硝基苯为原料 ,苄基三乙基溴化铵为相转移催化剂 ,在w(Pt) =5%的Pt C存在下进行催化氢化转位制得对氨基苯酚 ,收率 75%;同时副产苯胺 ,收率 1 0 %。Pt C催化剂经活化处理后 ,可套用 35批次以上 ,不影响收率和选择性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号