首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SR 31747 is a novel immunosuppressant agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae, SR 31747-treated cells accumulate the same aberrant sterols as those found in a mutant impaired in delta 8- delta 7-sterol isomerase. Sterol isomerase activity is also inhibited by SR 31747 in in vitro assays. Overexpression of the sterol isomerase-encoding gene, ERG2, confers enhanced SR resistance. Cells growing anaerobically on ergosterol-containing medium are not sensitive to SR. Disruption of the sterol isomerase-encoding gene is lethal in cells growing in the absence of exogenous ergosterol, except in SR-resistant mutants lacking either the SUR4 or the FEN1 gene product. The results suggest that sterol isomerase is the target of SR 31747 and that both the SUR4 and FEN1 gene products are required to mediate the proliferation arrest induced by ergosterol depletion.  相似文献   

2.
SR31747 is a novel agent that elicits immunosuppressive and anti-inflammatory effects. This drug was shown to inhibit Delta8-Delta7 sterol isomerase in yeast. To test whether this enzyme could also be an SR31747 target in mammals, the binding, antiproliferative and sterol biosynthesis inhibitory properties of various drugs were studied in recombinant sterol isomerase-producing yeast cells. Our results clearly show that SR31747 is a high affinity ligand of recombinant mammalian sterol isomerase (Kd = 1 nM). Tridemorph, a sterol biosynthesis inhibitor that is widely used in agriculture as an antifungal agent, is also a powerful inhibitor of murine and human sterol isomerases (IC50 value in the nanomolar range). Some drugs, like cis-flupentixol, trifluoperazine, 7-ketocholestanol and tamoxifen, inhibit SR31747 binding only with the mammalian enzymes, whereas other drugs, like haloperidol and fenpropimorph, are much more effective with the yeast enzyme than with the mammalian ones. Emopamil, a high affinity ligand of human sterol isomerase, is inefficient in inhibiting SR31747 binding to its mammalian target, suggesting that the SR31747 and emopamil binding sites on mammalian sterol isomerase do not overlap. In contrast, SR31747 binding inhibition by tamoxifen is very efficient and competitive (IC50 value in the nanomolar range), indicating that mammalian sterol isomerase contains a so-called antiestrogen binding site. Tamoxifen is found to selectively inhibit sterol biosynthesis at the sterol isomerase step in the cells that are producing the mammalian enzyme in place of their own sterol isomerase. Finally, we also show that tridemorph, a sterol biosynthesis inhibitor widely used in agriculture as an antifungal agent, is not selective of yeast Delta8-Delta7 sterol isomerase but is also highly efficient against murine Delta8-Delta7 sterol isomerase or human Delta8-Delta7 sterol isomerase. This observation contrasts with our already published results showing that fenpropimorph, another sterol isomerase inhibitor used in agriculture, is only poorly efficient against the mammalian enzymes.  相似文献   

3.
The yeast C-8,7 sterol isomerase contains a polyvalent high-affinity drug binding site similar to mammalian sigma receptors. Exogenously supplied sigma ligands inhibit sterol biosynthesis in yeast, demonstrating a pharmacological relationship between sigma ligand-binding and C-8,7 sterol isomerase activity. We report the isolation of an Arabidopsis thaliana C-8,7 sterol isomerase by functional complementation of the corresponding sterol mutant in yeast and its characterization by exposure to sigma ligands. The yeast erg2 mutant, which lacks the C-8,7 sterol isomerase gene and activity, was transformed with an Arabidopsis cDNA yeast expression library. Transformed colonies were selected for restoration of C-8,7 sterol isomerase activity (i.e. wild-type ergosterol production) by enhanced resistance to the antibiotic cycloheximide. Sterols produced in complemented lines were characterized by gas chromatography-mass spectroscopy (GC-MS). The full-length A. thaliana cDNA (pA.t.SI1) that complemented the erg2 mutation contains an open reading frame encoding a 21 kDa protein that shares 68% similarity and 35% amino acid identity to the recently isolated mouse C-8,7 sterol isomerase. The sigma ligands, haloperidol, ifenprodil and verapamil inhibited the production of ergosterol in wild-type Saccharomyces cerevisiae and in the erg2 mutant complemented with pA.t.SI1. Structural and biochemical similarities between the A. thaliana C-8,7 sterol isomerase and the mammalian emopamil-binding protein (EBP) are discussed.  相似文献   

4.
Phosphomannose isomerase catalyses the interconversion of fructose-6-P and mannose-6-P and has a critical role in the supply of D-mannose derivatives required for many eukaryotic glycosylation reactions. Three classes of enzymes possessing phosphomannose-isomerase activity have been identified in bacteria and lower eukaryotes. We have purified human phosphomannose isomerase to homogeneity from placental tissue. Protein sequence information obtained from internal fragments of the protein was used to design degenerate oligonucleotides which were used to amplify a fragment of a human phosphomannose-isomerase cDNA. A full-length cDNA was isolated from a human testes lambda gt11 library using this fragment as a probe. The cDNA encoded a protein with significant sequence identity to fungal and some bacterial phosphomannose isomerases but was unrelated to those from other bacteria. Based on amino acid sequence identity we propose a classification system for enzymes with phosphomannose-isomerase activity. The cDNA, under the control of the GAL1 promoter, was expressed in a Saccharomyces cerevisiae strain from which the native gene encoding phosphomannose isomerase had been deleted. The human enzyme was found to be able to functionally substitute for the yeast enzyme. Phosphomannose-isomerase mRNA was found in all human tissues tested but was more highly expressed in heart, brain and skeletal muscle. The cDNA was expressed in Escherichia coli permitting the isolation of pure recombinant protein which will be used for kinetic and structural studies.  相似文献   

5.
6.
The human emopamil binding protein (hEBP) exhibits sterol Delta8-Delta7 isomerase activity (EC 5.3.3.5) upon heterologous expression in a sterol Delta8-Delta7 isomerization-deficient erg2-3 yeast strain. Ala scanning mutagenesis was used to identify residues in the four putative transmembrane alpha-helices of hEBP that are required for catalytic activity. Isomerization was assayed in vivo by spectrophotometric quantification of Delta5,7-sterols. Out of 64 Ala mutants of hEBP only H77A-, E81A-, E123A-, T126A-, N194A-, and W197A-expressing yeast strains contained 10% or less of wild-type (wt) Delta5,7-sterols. All substitutions of these six residues with functionally or structurally similar amino acid residues failed to fully restore catalytic activity. Mutants E81D, T126S, N194Q, and W197F, but not H77N and E123D, still bound the enzyme inhibitor 3H-ifenprodil. Changed equilibrium and kinetic binding properties of the mutant enzymes confirmed our previous suggestion that residues required for catalytic activity are also involved in inhibitor binding [Moebius et al. (1996) Biochemistry 35, 16871-16878]. His77, Glu81, Glu123, Thr126, Asn194, and Trp197 are localized in the cytoplasmic halves of the transmembrane segments 2-4 and are proposed to line the catalytic cleft. Ala mutants of Trp102, Tyr105, Asp109, Arg111, and Tyr112 in a conserved cytoplasmic domain (WKEYXKGDSRY) between transmembrane segments 2 and 3 contained less than 10% of wt Delta5,7-sterols, implying that this region also could be functionally important. The in vivo complementation of enzyme-deficient yeast strains with mutated cDNAs is a simple and sensitive method to rapidly analyze the functional consequences of mutations in sterol modifying enzymes.  相似文献   

7.
8.
9.
Methylation is one of the many post-translational modifications that modulate protein function. Although asymmetric NG,NG-dimethylation of arginine residues in glycine-arginine-rich domains of eucaryotic proteins, catalyzed by type I protein arginine N-methyltransferases (PRMT), has been known for some time, members of this enzyme class have only recently been cloned. The first example of this type of enzyme, designated PRMT1, cloned because of its ability to interact with the mammalian TIS21 immediate-early protein, was then shown to have protein arginine methyltransferase activity. We have now isolated rat and human cDNA orthologues that encode proteins with substantial sequence similarity to PRMT1. A recombinant glutathione S-transferase (GST) fusion product of this new rat protein, named PRMT3, asymmetrically dimethylates arginine residues present both in the designed substrate GST-GAR and in substrate proteins present in hypomethylated extracts of a yeast rmt1 mutant that lacks type I arginine methyltransferase activity; PRMT3 is thus a functional type I protein arginine N-methyltransferase. However, rat PRMT1 and PRMT3 glutathione S-transferase fusion proteins have distinct enzyme specificities for substrates present in both hypomethylated rmt1 yeast extract and hypomethylated RAT1 embryo cell extract. TIS21 protein modulates the enzymatic activity of recombinant GST-PRMT1 fusion protein but not the activity of GST-PRMT3. Western blot analysis of gel filtration fractions suggests that PRMT3 is present as a monomer in RAT1 cell extracts. In contrast, PRMT1 is present in an oligomeric complex. Immunofluorescence analysis localized PRMT1 predominantly to the nucleus of RAT1 cells. In contrast, PRMT3 is predominantly cytoplasmic.  相似文献   

10.
11.
HAH1 is a 68-amino acid protein originally identified as a human homologue of Atx1p, a multi-copy suppressor of oxidative injury in sod1 delta yeast. Molecular modeling of HAH1 predicts a protein structure of two alpha-helices overlaying a four-stranded antiparallel beta-sheet with a potential metal binding site involving two conserved cysteine residues. Consistent with this model, in vitro studies with recombinant HAH1 directly demonstrated binding of Cu(I), and site-directed mutagenesis identified these cysteine residues as copper ligands. Expression of wild type and mutant HAH1 in atx1 delta yeast revealed the essential role of these cysteine residues in copper trafficking to the secretory compartment in vivo, as expression of a Cys-12/Cys-15 double mutant abrogated copper incorporation into the multicopper oxidase Fet3p. In contrast, mutation of the highly conserved lysine residues in the carboxyl terminus of HAH1 had no effect on copper trafficking to the secretory pathway but eliminated the antioxidant function of HAH1 in sod1 delta yeast. Taken together, these data support the concept of a unique copper coordination environment in HAH1 that permits this protein to function as an intracellular copper chaperone mediating distinct biological processes in eucaryotic cells.  相似文献   

12.
13.
14.
beta ig-h3 is a novel gene first discovered by differential screening of a cDNA library made from A549 human lung adenocarcinoma cells treated with transforming growth factor-beta 1 (TGF-beta 1). It encodes a 683-amino-acid protein containing a secretory signal sequence and four homologous internal domains. Here we show that treatment of several types of cells, including human melanoma cells, human mammary epithelial cells, human keratinocytes, and human fibroblasts, with TGF-beta resulted in a significant increase in beta ig-h3 RNA. A portion of the beta ig-h3 coding sequence was expressed in bacteria, and antisera against the bacterially produced protein was raised in rabbits. This antisera was used to demonstrate that several cell lines secreted a 68-kD beta IG-H3 protein after treatment with TGF-beta. Transfection of beta IG-H3 expression plasmids into Chinese hamster ovary (CHO) cells led to a marked decrease in the ability of these cells to form tumors in nude mice. The beta IG-H3 protein was purified from media conditioned by recombinant CHO cells, characterized by immunoblotting and protein sequencing and shown to function in an anti-adhesion assay in that it inhibited the attachment of A549, HeLa, and WI-38 cells to plastic in serum-free media. Sequencing of cDNA clones encoding murine beta ig-H3 indicated 90.6% conservation at the amino acid level between the murine and human proteins. Finally, the beta ig-h3 gene was localized to human chromosome 5q31, a region frequently deleted in preleukemic myelodysplasia and leukemia. The corresponding mouse beta ig-h3 gene was mapped to mouse chromosome 13 region B to C1, which confirms a region of conservation on human chromosome 5 and mouse chromosome 13. We suggest that this protein be named p68 beta ig-h3.  相似文献   

15.
We report the cloning of a human cDNA encoding a protein of calculated 68.8 kDa molecular mass, named hMP70. The deduced protein sequence shows a large N-terminal hydrophilic part and a C-terminal part with nine putative hydrophobic regions characteristic of integral transmembrane domains. Computer searches with sequence databases revealed homologies with three complete yeast proteins and with at least 19 human, 10 plant and one nematode short unidentified protein sequences translated from Expressed Sequence Tags (ESTs). Remarkably, this hMP70 protein retains between 27 and 31% overall sequence identity with the yeast proteins. We propose that hMP70 and related genes have evolved from a common ancestral gene and form a new multispanning membrane protein family which we call the MP70 protein family. Gene expression of hMP70 appears to be ubiquitous, as the mRNA is detectable in all human tissues analysed so far, as shown by Northern blot analysis. Furthermore, a protein of about 70 kDa is detectable in different mammalian cell lines, as shown by immunoblot analysis. From its widespread expression and conservation from yeast, plants to mammals, it is likely that hMP70 has a fundamental biological function in the cell.  相似文献   

16.
17.
18.
We have isolated a novel human C-C chemokine, MIP-1 delta from a human fetal spleen cDNA library. The human MIP-1 delta cDNA has an unusually long 400-bp 5-prime untranslated region and a predicted 113-amino acid protein of 10 kDa. The coding sequence contains a signal peptide of 21 amino acids, indicating that the mature protein has 92 amino acids (8 kDa). Recombinant human MIP-1 delta produced by transfected human embryonic kidney 293 cells produced an 8-kDa protein, which confirmed the presence of a signal peptide. Compared with other human C-C chemokines, human MIP-1 delta shows the highest homology with human HCC-1, CK beta-8, murine C10, and CCF18 (MIP-1 gamma). The human MIP-1 delta gene is localized on chromosome 17 where most of the C-C chemokine superfamily is located. Human MIP-1 delta is expressed in T and B lymphocytes, NK cells, monocytes, and monocyte-derived dendritic cells, but not in bone marrow-derived dendritic cells. Its expression can be induced by other proinflammatory cytokines in monocytes and dendritic cells. Human MIP-1 delta is chemotactic for T cells and monocytes, but not for neutrophils, eosinophils, or B cells. Human MIP-1 delta induced calcium flux in human CCR1-transfected cells.  相似文献   

19.
We have cloned and characterized a putative protein serine/threonine kinase termed prk through a combination of polymerase chain reaction and conventional cDNA library screening approaches. There are apparently two distinct domains within prk protein deduced from its nucleotide sequences. The amino-terminal portion has the feature of the catalytic domain of a serine/threonine kinase and shows strong homology to mouse fnk and other polo family kinases including mouse snk, human and murine plk, Drosophila polo, and yeast Cdc5. The carboxyl-terminal portion, presumably the regulatory domain, shares extensive homology to mouse fnk. Northern blotting analyses reveal that prk expression is restricted to a very limited number of tissues with placenta, ovaries, and lung containing detectable amounts of prk mRNA. prk mRNA expression is also detected at a low level in the megakaryocytic cell line Dami, MO7e, and three brain glioma cell lines. In addition, refeeding of serum-deprived MO7e, Dami, and K562 cells of hematopoietic origin and GMOO637D of lung fibroblasts rapidly activates prk mRNA expression with its peak induction around 2 h after serum addition. prk gene activation by the serum requires no new protein synthesis. The recombinant cytokines such as interleukin-3 and thrombopoietin also activate prk mRNA expression in MO7e cells. Furthermore, a survey of RNAs isolated from the tumor and the uninvolved tissues from 18 lung cancer patients reveals that prk mRNA expression is significantly down-regulated in tumor tissues. Southern blotting analysis indicates that the prk gene is present in a single copy in the genome of tumors and normal cells. Taken together, these results suggest that prk expression may be restricted to proliferating cells and involved in the regulation of cell cycle progression. The molecular cloning of prk cDNA will facilitate the study of its biological role as well as its potential role in tumorigenesis.  相似文献   

20.
PURPOSE: Patients with active pars planitis have increased levels of a 36 kDa protein (p-36) in their circulation. The current studies were undertaken to determine the primary structure of this protein. METHODS: A degenerate oligonucleotide probe based on the amino terminal sequence of p-36 was used to identify a clone from a human spleen cDNA library. The cDNA insert was subcloned into the EcoR1 site of pUC-19, and both strands were sequenced. Southern blot analysis was used to study the genomic hybridization pattern. p-36 cDNA was subcloned in a pSG5 expression vector, and the construct was used to transfect COS-7 cells. RESULTS: The cDNA sequence contained an open reading frame of 966 base pairs encoding a protein of 322 amino acids, an untranslated region of 322 base pairs, and 2693 base pairs at the 5' and 3' ends, respectively. The deduced amino acid sequence showed 96.8% identity with the carboxy-terminal region of a yeast nucleopore complex protein, nup 100. Southern blot analysis of human genomic DNA revealed a simple hybridization pattern. Transfection of p-36 cDNA in COS-7 cells resulted in the presence of p-36 mRNA and expression of protein. CONCLUSIONS: The 36 kDa protein (p-36) detected at increased levels in the blood of patients with active pars planitis was cloned from a human spleen cDNA library. Its deduced amino acid sequence is homologous with the carboxy-terminal region of a nucleopore complex protein. Thus, we refer to this protein as nup36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号