首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

2.
生活垃圾机械脱除水是通过高压挤压等方式从新鲜生活垃圾中快速分离出的混合液,其经厌氧处理后的出水具有高氨氮、低C/N值等特征,为此,利用序批式反应器(SBR)通过短程硝化反硝化途径对其氨氮进行去除,利用高氨氮浓度下的高游离氨(FA)条件对亚硝酸盐氧化菌(NOB)的活性进行抑制,实现SBR中短程硝化与亚硝态氮的稳定积累。研究结果表明,在室温条件下,控制p H值为7.5~8.0、DO1 mg/L,逐步提高氨氮浓度至700 mg/L,可实现系统中亚硝态氮的有效积累,氨氮去除率和亚硝态氮积累率分别为92.2%、90.9%左右。将短程硝化出水进一步进行反硝化处理,TN去除率高达98.8%。  相似文献   

3.
为避免实际废水中一定浓度的有机物对厌氧氨氧化的脱氮产生不利影响,向2组启动成功的厌氧氨氧化装置之一R2中投加有机COD(C/N=0. 6)与反硝化耦合协同脱氮,并以硝酸盐为电子受体,R1中不加有机物作为对比,定期测定脱氮效果与有机碳源消耗。结果表明:R1中厌氧氨氧化菌自身可利用少量硝酸盐进行厌氧氨氧化反应,氨氮、硝态氮去除率分别为26. 7%和30. 5%; R2装置中两种菌种协同脱氮,氨氮、硝态氮去除率分别提高至36. 4%和48. 6%,出水亚硝态氮稳定在4 mg/L以下,碳源利用率在90%以上,但2组装置对磷的利用几乎为零。适当投加有机物可促使厌氧氨氧化与反硝化耦合协同脱氮,为含碳和硝酸盐废水的脱氮除碳提供了参考。  相似文献   

4.
雷秉亚 《山西建筑》2014,(29):158-159,204
为探讨高负荷条件下复合式UASB反应器中厌氧氨氧化反应的脱氮性能和稳定性,在已经成功启动并稳定运行的厌氧氨氧化反应器中,通过提高进水总氮浓度和缩短水力停留时间两种方式提高总氮负荷,考察脱氮效果。结果表明,通过逐步提高进水总氮浓度和缩短HRT可以提高厌氧氨氧化反应的总氮负荷,并获得理想的脱氮效果和运行稳定性,但过高的亚硝态氮浓度会对反应产生一定的抑制作用。  相似文献   

5.
UASB反应器培养厌氧氨氧化菌的试验研究   总被引:2,自引:0,他引:2  
于UASB反应器中接种不同浓度的厌氧污泥来培养厌氧氨氧化菌,为深度处理低C/N值的畜禽粪尿提供厌氧氨氧化污泥.结果表明,低污泥浓度的1号反应器经过130 d的运行,在进水氨氮和亚硝态氮浓度均为150 mg/L、TN负荷为0.36 kg/(m<'>·d)的条件下,对TN的去除率在80%以上;高污泥浓度的2号反应器经过200 d的运行,在进水氨氮和亚硝态氮浓度均为340mg/L及TN负荷为0.80 kg/(m<'3>·d)的条件下,对TN的去除率为75%~85%.在稳定运行期1号和2号反应器去除的NH<,4><'+>-N和N02<,2><'->-N量与NO<,3><'->-N生成量之比分别为1:(1.1~1.2):(0.25~0.45)和1:(1.1~1.2):(0.30~0.40),出水pH值大于进水的.可见,接种污泥浓度高的反应器的抗冲击负荷能力强,更有利于厌氧氨氧化污泥的培养.  相似文献   

6.
往一套UASB生物膜厌氧氨氧化反应器中加入葡萄糖促使反应器内反硝化菌增殖,然后迫使增殖的反硝化菌进行厌氧氨氧化反应以提高反应器的脱氮效果。结果显示:在反应器进水中加入葡萄糖后,系统对亚硝酸盐氮的去除率迅速提高到90%,但对氨氮的去除率变化不大,显示出反应器内同时发生了反硝化反应和厌氧氨氧化反应;当进水中停止投加葡萄糖后,仅运行10d,系统对氨氮、亚硝酸盐氮和总氮的去除率就分别达到了90%、98%和91%,一个月后对总氮的去除率达到99%。可见,在特定环境下可迫使反硝化菌进行厌氧氨氧化反应。  相似文献   

7.
以模拟高氨氮废水为进水,在聚氨酯填料生物膜反应器中实现厌氧氨氧化,考察了其脱氮性能。在运行稳定期,系统对氨氮、亚硝酸盐氮和总氮的去除率分别达到90.1%、89.3%和85.5%;总氮负荷最高达到17.6 kg/(m3·d)。进水亚硝酸盐氮浓度达到271.2~314.0 mg/L时会抑制厌氧氨氧化菌活性,影响厌氧氨氧化反应。进出水pH值的差值可以反映系统的脱氮效果,相对于进水pH值,出水pH值越高,说明系统的脱氮效果越好。应用电子显微镜和扫描电镜观察生物膜的形态,反应器底部生物膜颜色较浅,呈黄褐色,以丝状菌和长杆菌为主,而顶部生物膜颜色较深,呈棕红色,以短杆菌和球菌为主。  相似文献   

8.
利用移动床生物膜反应器(MBBR)对亚硝化-厌氧氨氧化-反硝化(SNAD)工艺处理垃圾渗滤液厌氧出水的脱氮效果进行了研究。SNAD-MBBR反应器内投加K3填料,控制温度为33~35℃、DO为0. 03~0. 1 mg/L、pH值为7. 5~8. 0、HRT为12 h,试验一共进行了152 d,在进水总氮负荷逐渐增加过程中相应调节曝气量以获得最佳去除效果。结果表明,在该工艺条件下进水总氮负荷为0. 9 kg/(m~3·d)时,TN去除率仍可达88%。当进水总氮负荷继续提高至1 kg/(m~3·d)时,由于进水中的有机物浓度较高以及多种异养好氧菌的繁殖,抑制了亚硝化及厌氧氨氧化过程,致使反应器脱氮效率明显降低,仅为20%左右。  相似文献   

9.
进水N/S值对同步脱硫反硝化特性的影响   总被引:2,自引:2,他引:0  
研究了不同进水N/S值条件下,不同接种物的厌氧体系的同步脱硫反硝化特性。结果表明:在N/S为0.6或0.4的条件下,3个体系对硫化物的去除率均达到90%以上,其中以进水N/S为0.4时产生的悬浮态硫最多;硝态氮的去除特性与硫化物不同,3个体系对硝态氮的去除率均在进水N/S为1.0时达到100%,且此时N2的产量也最大。可见,尽管同步脱硫反硝化工艺具备同时脱氮及除硫的能力,但其进水N/S的控制值却不相同。对于脱硫而言,最佳的进水N/S为0.4;对于脱氮而言,最佳的进水N/S为1.0。此外,研究发现3个不同接种物的厌氧体系对硫化物及硝态氮的去除途径不同,进水N/S值的影响也有差异。对于接种了厌氧污泥的体系,存在自养反硝化和异养反硝化的竞争,改变进水N/S值可调节二者的竞争,高N/S值会抑制硫化物自养反硝化过程,降低对硫化物的去除率;对于接种脱氮硫杆菌的纯菌体系,多硫自催化反应会与硫化物自养反硝化反应竞争硫化物,降低对硝态氮的去除率,高N/S值会导致出水硝态氮浓度较高;对于添加脱氮硫杆菌的强化厌氧污泥体系,以硫化物自养反硝化过程为主,最佳的N/S为0.4。  相似文献   

10.
在实验室条件下分别运行以玉米芯/海绵铁复合填料和单纯玉米芯填料的反硝化滤池,分析两类填料的反硝化脱氮效果,考察复合填料对硝态氮的去除率及出水水质。结果表明,复合填料反硝化滤池以生物异养反硝化作用为主,较单纯玉米芯填料反应器表现出更加稳定的反硝化脱氮效果。当进水硝态氮浓度为20 mg/L、停留时间3 h时,复合填料反应器对硝态氮的去除率可以维持在90%以上,出水硝态氮浓度2 mg/L,没有出现亚硝态氮、氨氮的积累和pH值升高现象;3个月的运行期间单位质量玉米芯的脱氮量为0.42 kg/kg,比单纯玉米芯高0.05 kg/kg。因此,玉米芯/海绵铁复合填料作为反硝化滤池的碳源和生物载体具有脱氮效果好、无需连续添加碳源、出水pH值稳定的特点。  相似文献   

11.
接种污泥对厌氧氨氧化反应器启动特性的影响   总被引:1,自引:0,他引:1  
采用两套相同的ASBR系统,分别接种好氧硝化污泥和自养反硝化污泥,在模拟废水的pH值为7.6~7.9、温度为32 ℃的条件下,分别运行176 d和170 d后,均成功启动了厌氧氨氧化反应器.在稳定运行阶段,其总氮容积负荷分别为0.147和0.11 kgN/(m3·d),对总氮的平均去除率分别为84.81%和81.57%.两组反应器内氨氮和亚硝态氮的减少量与硝态氮的生成量之比分别为1:1.08:0.31和1:1.18:0.33.接种了好氧硝化污泥的反应器启动更快,且对氨氮的去除效果更好.  相似文献   

12.
为了考察碳源对低氨氮污水短程硝化的影响,采用序批式反应器(SBR),在水温为(30±1)℃、pH值为7.8~8.2、DO为0.5~1.0 mg/L条件下,成功驯化出稳定运行的短程硝化系统,并研究了不同碳氮比(C/N)对短程硝化系统的影响,同时对各条件下系统的菌种变化进行了定量分析。结果表明,随着原水COD浓度的增加,短程硝化效果受到的影响增大,氨氮去除率和亚硝态氮积累率呈现下降趋势。当原水C/N值≤1.0时,COD浓度不会对短程硝化系统造成明显影响;但是,当原水C/N值增大到2.0和3.0时,氨氮去除率分别仅为82.8%、71.58%,氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的比例从38.1∶1降到11.5∶1,短程硝化受到严重影响,系统趋于崩溃。碳源浓度的增加对短程硝化系统逐步产生抑制作用,实际运行中应控制C/N值不大于1.0。  相似文献   

13.
亚硝化/厌氧氨氧化一体化反应器的启动特性分析   总被引:4,自引:0,他引:4  
以经常规处理后的养猪场废水成功启动自行设计的亚硝化/厌氧氨氧化一体化反应器,着重分析了一体化反应器供氧段和非供氧段的启动特性及处理效果.在启动期间,供氧段对COD、NH4+-N的最大去除率分别达72.24%、71.62%,通过调节曝气量控制系统内的DO浓度实现了稳定的亚硝态氮积累,且出水pH和NO2--N/NH4+-N值满足非供氧段进行厌氧氨氧化的要求;非供氧段可能同时存在反硝化和厌氧氨氧化过程,对NH4+-N、N2--N的最大去除率分别达55.10%、63.74%,脱氮效果明显;第115天,养猪场废水经一体化反应器处理后,对COD、NH4+-N、TN的去除率分别为73.07%、85.00%、67.23%,达到了深度处理的目的.  相似文献   

14.
采用SBR反应器,以硝化污泥和厌氧氨氧化(ANAMMOX)颗粒污泥的混合污泥为接种污泥,以有机模拟废水为研究对象,进行了厌氧氨氧化生物脱氮工艺研究。结果表明,在控制温度为25℃,水力停留时间为12 d,pH值为7.2~8.5,进水NH4+-N为220 mg/L左右、NO2--N为138 mg/L左右、COD为294 mg/L的条件下成功启动了SBR反应器。在高氨氮、低有机物浓度的条件下,ANAMMOX菌和异养反硝化菌能够实现共存,且ANAMMOX菌仍能成为优势菌属,AN-AMMOX反应是反应器中的主导反应。镜检发现,优势菌尺寸约为1μm,呈圆形或椭圆形,成簇聚生,表面可观察到明显的漏斗状缺口,具有典型的厌氧氨氧化菌特征。污泥中形成了以厌氧氨氧化球状菌为主、其他杆状菌和丝状菌共存的微生物混培体。  相似文献   

15.
利用包埋固定化技术进行反硝化脱氮,通过控制反应器参数,在以乙酸钠为碳源、填充率为20%、碳氮比为3. 5:1、进水硝态氮平均浓度为15 mg/L的条件下,经过15 d的启动和驯化,反应器出水硝态氮平均浓度降为1. 74 mg/L,TN去除率在90%以上;提高进水硝态氮平均浓度至29. 98 mg/L时,出水硝态氮平均浓度为3. 60 mg/L,TN去除率达到85%以上。在此过程中脱氮效率和pH值的升高呈现出良好的正相关性。反应器停止运行14 d后再重新启动,5 d后即可恢复脱氮能力。在碳氮比为2. 2:1的情况下,脱氮效率下降,同时出现亚硝态氮的积累;而在碳氮比为6:1的情况下,未出现亚硝态氮的积累,说明亚硝态氮的积累与碳源的供给情况相关。  相似文献   

16.
采用浸没式厌氧氨氧化膜生物反应器(Amx IMBR)培养厌氧氨氧化菌,当进水氨氮与亚硝态氮浓度均为450 mg/L、氮负荷为0.6 kg/(m~3·d)时,总氮去除率稳定在86%左右,氨氮、亚硝态氮去除率分别稳定在90%、97%以上;氨氮去除量∶亚硝态氮去除量∶硝态氮生成量基本为1∶1∶0.18。Amx IMBR的临界通量为8.63 L/(m~2·h),这与长期运行的结果相符。膜污染的来源主要是紧密型胞外聚合物,其中蛋白质和多糖含量分别为2.42、0.84 g/m~2。运行过程中,厌氧氨氧化菌形态从红棕色颗粒污泥变成了浮游态污泥,是Amx IMBR最显著的特征之一。高通量分析结果显示,浮游态污泥中的优势菌群主要为拟杆菌门(Bacteroidetes,47.83%)、浮霉菌门(Planctomycetes,21.2%)、变形菌门(Proteobacteria,18.85%),其中优势厌氧氨氧化菌属为Candidatus Kuenenia,相对丰度为17.08%。  相似文献   

17.
研究厌氧氨氧化与反硝化协同控制处理污泥消化液,分析微生物不同生长阶段的特性特点,并对其脱氮除碳性能进行试验研究,进行氮素平衡理论计算,证实厌氧氨氧化技术与反硝化技术协同处理低碳氮比高氨氮污泥消化液的可行性。通过添加葡萄糖等试剂,试验结果证实,在C/N比为1.5,pH值为8的条件下,厌氧氨氧化协同反硝化反应具有最佳的脱氮效果。  相似文献   

18.
研究了不同进水有机物浓度条件下,接种物不同的厌氧体系的同步脱硫反硝化特性。结果表明:当进水COD浓度从零增加到250mg/L时,两个接种物不同的反应器对硫化物、硝态氮和COD的去除率变化不同。接种厌氧污泥的1#反应器对硫化物的去除率从85%逐渐增加到99%,80%~90%的进水COD被去除,但产气量逐渐降低,出现了亚硝态氮的积累,反硝化脱氮困难;接种脱氮硫杆菌到厌氧污泥中的2#反应器对硫化物的去除率一直稳定在99%,相应的产气量也逐渐增大,脱氮效率高,55%~73%的进水COD被去除。此外,在这个浓度范围内,还观察到两个反应器出水硫酸盐的浓度由不加乙酸钠的23mg/L分别降到18mg/L和19mg/L,理论上硫转化率提高了4%~19%。当进水COD400mg/L时,仅60%~76%的硫化物被去除,相应的产气量也迅速降低,硫化物的氧化和反硝化过程均明显受到抑制。总而言之,在进水COD为250mg/L时,2#反应器对硫化物和硝态氮的去除率均达到了100%左右,对硫化物的比降解速率和产气量也提高了1.1~1.2倍,相应的出水硫酸盐浓度最低,80%左右的硫化物转化为单质硫,73%的COD被去除,可以实现同时脱氮、除硫和除碳,为同步脱氮除硫工艺的实际应用提供了新的思路。  相似文献   

19.
厌氧氨氧化与反硝化的协同作用特性研究   总被引:7,自引:0,他引:7  
在已稳定运行7个月的自养脱硫反硝化反应器中成功富集厌氧氨氧化菌后,利用反硝化菌的不完全反硝化作用为厌氧氨氧化菌提供NO2--N。以NH4+-N、NO3--N和有机物为基质,研究厌氧氨氧化与反硝化的协同作用,并探讨了其最适协同作用条件。反应器的有效容积为2L,遮光放置,通过恒温水浴维持反应器内温度为(33±0.5)℃,并投加活性炭作为填料。结果表明,厌氧氨氧化菌能与反硝化菌共存,反应器可实现厌氧氨氧化与反硝化的协同作用,且最适协同作用条件是:COD/TN=1.46、pH=7.55。  相似文献   

20.
半亚硝化是高氨氮污水通过厌氧氨氧化(ANAMMOX)途径脱氮的基础和关键步骤。在序批式反应器(SBR)中接种好氧颗粒污泥(AGS)并处理高氨氮污水,研究了实现半亚硝化的可行性。首先通过调节水力停留时间及进水氨氮浓度实现稳定的短程硝化。进水NH+4-N约为220mg/L时,对NH+4-N的去除率达到98%左右,亚硝态氮积累率(NAR)约为95%,并能够保持稳定运行。此后通过缩短水力停留时间为6 h可控制反应器出水NH+4-N/NO-2-N值在1.0左右,满足ANAMMOX对进水水质的要求。在氨氮氧化过程中NO-3-N浓度基本保持不变,氨氧化菌(AOB)为优势硝化菌群;扫描电镜表明颗粒污泥中主要是球菌、短杆菌,符合AOB的形态特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号