首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚偏氟乙烯( PVDF)为基膜、聚二甲基硅氧烷(PDMS)为选择层制备了PDMS/PVDF复合膜,应用于渗透汽化分离乙醇/水混合物.系统研究了膜交联温度、操作温度、物料浓度和膜下侧压力对乙醇/水混合物的渗透汽化分离性能的影响,发现经130℃交联的复合膜在温度为60℃时,对乙醇的分离因子为8.23,可将乙醇浓度从体积分...  相似文献   

2.
高通量ZSM-5填充硅橡胶复合膜渗透汽化性能研究   总被引:1,自引:0,他引:1  
以硅铝比为360的ZSM-5型沸石对聚二甲基硅氧烷(PDMS)进行填充,以聚偏氟乙烯(PVSF)为支撑层,制备了ZSM-5填充PDMS/PVDF复合膜,用于渗透汽化乙醇/水混合物的分离.研究了沸石填充量、操作温度、进料液浓度对乙醇/水的渗透汽化分离性能的影响,发现该复合膜较文献报道中的沸石填充膜,其渗透通量有了明显的提高,在50℃沸石填充量为40%时,对乙醇的分离因子为11.7,其渗透通量达到749.8 g/(m2·h).随着操作温度的升高或料液中乙醇浓度升高,渗透通量增大,分离因子下降.  相似文献   

3.
以静电纺丝聚偏氟乙烯(PVDF)纳米纤维膜为多孔支撑层,在其上涂覆聚二甲基硅氧烷(PDMS)为致密分离层,制备了PVDF/PDMS复合纳米纤维膜,并对复合膜的渗透汽化脱盐性能进行了研究。在涂覆操作前,使用堵孔剂聚乙二醇处理PVDF纳米纤维膜,以降低涂覆过程的孔渗问题,有效提高了复合膜对盐离子的截留能力。通过扫描电子显微镜、热重分析仪和红外光谱仪等手段表征了复合膜的微观形貌、热稳定性和表面官能团形式。结果表明:聚乙二醇浓度为12%(wt,质量分数,下同)为最佳处理条件。操作温度为25℃时,渗透汽化脱盐通量可达6.46L/(m~2·h),NaCl截留率为98.8%;升温至75℃,通量可达19.3L/(m2·h),NaCl截留率为95.6%。  相似文献   

4.
以聚偏氟乙烯(PVDF)多孔膜为支撑层,将沸石咪唑酯骨架结构材料(ZIF-8)填充到聚二甲基硅氧烷(PDMS)中,制得ZIF-8/PDMS复合膜,用于渗透汽化分离乙醇/水体系。对ZIF-8/PDMS复合膜进行了表征。考察了不同ZIF-8粒子对ZIF-8/PDMS复合膜渗透汽化分离性能的影响。研究结果表明,在金属离子与有机配体的配合比为1∶2的ZIF-8粒子,操作温度为50℃条件下,ZIF-8/PDMS复合膜的渗透通量为182.4g/(m2·h),分离因子最高为8.8。  相似文献   

5.
电场强化组装聚离子复合物膜研究   总被引:1,自引:1,他引:0  
采用水解改性PAN超滤膜作为基膜.通过动态电场强化技术复合聚乙烯亚胺(PEI)制备聚电解质渗透汽化复合膜,考察了不同电压对聚离子复合膜的渗透汽化性能的影响.实验测定了复合膜对不同醇/水体系的分离性能,发现在仅复合一层PEI时,电场强化LBL组装膜(5 V电压作用)对质量分数为95%的异丁醇/水体系的分离因子可达485,渗透通量为1521g/(m2·h)(60℃).  相似文献   

6.
以聚醚砜(PES)平板多孔膜为支撑层,聚二甲基硅氧烷(PDMS)膜为分离层,在高温交联条件下制备了PDMS/PES渗透汽化复合膜。用扫描电镜对复合膜形貌进行了表征,复合膜表面平整、致密,分离层与支撑层外表面结合紧密。研究了PDMS质量分数对膜产生最高衍射峰时对应的2θ值、水与乙醇的接触角以及以10%(质量分数)乙醇水溶液为料液,30℃下复合膜渗透汽化分离性能的影响。结果表明:随着PDMS含量的增加,产生最高衍射峰时对应的2θ值先增大后减小。当PDMS含量为15%(wt,质量分数,下同)时,PDMS/PES复合膜有良好的疏水性和亲醇性,PDMS/PES复合膜的分离因子最大,最大值为4.60,对应的渗透通量为10325.54g/(m~2·h),分离指数出现最大值为47483.02。因此,15%PDMS条件下制备的PDMS/PES复合膜综合性能最好。  相似文献   

7.
以聚四氟乙烯(PTFE)微粉填充聚二甲基硅氧烷(PDMS)硅橡胶膜为活性皮层和PET无纺布为底膜,制备了PTFE-PDMS/PET渗透汽化复合膜并用于分离乙醇水溶液,分析了复合膜结构、疏水性、力学性能及溶胀性能.研究表明,随着PDMS复合膜中PTFE含量(质量分数,下同)增加,复合膜结晶度及水接触角增加;断裂伸长率和拉伸强度均呈现先增加后减小的趋势;膜溶胀度呈线性减少.复合膜渗透汽化选择性α和乙醇渗透系数J_E随PTFE含量的增加先增加后减少,而水渗透系数J_W呈逐渐减小的趋势,当PTFE填充量为10%时,乙醇渗透系数J_E最大.  相似文献   

8.
制备了以聚偏氟乙烯(PVDF)微滤膜为底膜的加成型硅橡胶聚二甲基硅氧烷(PDMS)复合膜,用于渗透汽化分离乙醇/水体系。通过改变膜液的固含量和配比研究了复合膜的成膜性,采用扫描电镜(SEM)表征了复合膜的形貌结构,测定了交联PDMS均质膜的平均交联链长度、凝胶含量、溶胀度和溶解选择性,考察了配比和操作温度对复合膜渗透汽化性能的影响。结果表明:当含氢硅油中氢与乙烯基硅油中乙烯基的摩尔比为2∶1时,操作温度为50℃,料液浓度为10%(质量分数)时,复合膜的分离因子最高为8.9,渗透通量为124g/(m~2·h)。  相似文献   

9.
以相转化法制备的聚偏氟乙烯(PVDF)、聚丙烯腈(PAN)、聚砜(PSF)三种多孔膜作为支撑层,制备聚二甲基硅氧烷(PDMS)复合膜用于渗透汽化乙醇/水混合物的分离。采用能量色散X射线光谱仪(EDX)定量表征了PDMS在支撑层表面的厚度(L0)和支撑层内的渗入深度(Li),研究发现,PDMS在各支撑层表面的厚度、支撑层内渗入的厚度有显著差异,PDMS复合膜的渗透通量与(L0+Li)间存在近似的线性关系,表明PDMS在支撑层中渗入深度不同是造成不同底膜支撑的PDMS复合膜渗透汽化性能差异的根本原因。文中提出选择层总厚度(Lt=L0+Li)概念,通过线性拟合得到PDMS复合膜渗透通量与Lt之间的定量关系,可以用来估算PDMS复合膜的渗透通量,并预测复合膜渗透通量极大值。  相似文献   

10.
采用动态层-层吸附成膜法(动态LBL),以聚醚砜超滤膜为基膜,以聚丙烯酸(PAA)、聚乙烯亚胺(PEI)为聚离子制备了聚离子复合膜.考察了动态成膜与静态吸附成膜的膜性能比较,研究了动态过滤时间、聚离子浓度、进料浓度、温度等因素对该复合膜渗透汽化性能的影响;并对复合膜表面和截面做了扫描电镜分析.在40℃时,该复合膜对乙醇/水体系的分离因子可达1300,渗透通量约150 g/(m2.h),体现了较好的渗透汽化分离性能.  相似文献   

11.
PDMS/PVDF复合膜渗透汽化分离乙酸/水体系的性能研究   总被引:1,自引:0,他引:1  
制备了聚二甲基硅氧烷/聚偏氟乙烯(PDMS/PVDF)渗透汽化复合膜,用于分离乙酸/水体系。研究了料液中乙酸浓度、料液温度、料液流速对复合膜分离性能的影响,比较了不同孔径PVDF支撑层的PDMS/PVDF复合膜的分离性能。结果表明:料液浓度增大、温度升高、流速加快有利于复合膜的传质,使渗透通量增加,但分离因子却表现出不同的变化趋势。渗透通量的大小按复合膜支撑层孔径的排列顺序为0.2μm0.45μm0.1μm1.0μm2.0μm,分离因子则为0.1μm2.0μm0.2μm0.45μm1.0μm,说明支撑层的结构对复合膜的分离性能具有重要的影响。  相似文献   

12.
本文以聚二甲基硅氧烷(PDMS)为膜材料,乙烯基三乙氧基硅烷(VTES)为交联剂,在聚偏氟乙烯(PVDF)中空纤维支撑膜表面通过交联反应制备出PDMS/PVDF中空纤维渗透汽化复合膜。采用扫描电子显微镜和全反射傅里叶红外光谱仪表征复合膜的形貌和结构变化。研究了膜对正丁醇-水、异丙醇-水及丙酮-水三种模拟含盐有机废水的分离效果,并考察了温度对膜性能的影响。结果表明:PDMS/PVDF中空纤维膜对这三种模拟含盐有机废水有较好的分离效果,操作温度为40 oC时,膜的渗透通量分别为275.95 g/(m2.h)、322.16 g/(m2.h)、489.76 g/(m2.h),分离因子为37.82、12.60、33.12。  相似文献   

13.
研制了新型纯硅沸石Silicalite-1/聚二甲基硅氧烷(PDMS)无机有机复合膜,进行了乙醇/水渗透汽化性能评价实验,采用扫描电镜(SEM)和X射线衍射(XRD)对膜的物理及微观结构分析和表征.分别采用原位法和晶种法制备性能相异的纯硅底膜.通过调控PDMS溶液的浓度来控制涂层的厚度和性能,研究Silicalite-1层和PDMS层对复合膜性能的影响.结果表明:所制备的无机有机复合膜在渗透汽化过程中表现出良好的稳定性,在保持高渗透通量的同时,复合膜的选择性得到了相当的提高.在60℃和乙醇质量分数为5%时,复合膜的通量和分离系数分别高达2.67 kg/(m2·h)和54.9.  相似文献   

14.
为从醋酸正丁酯稀水溶液中回收微量酯,采用涂布法制备了聚醚共聚乙酰胺/聚偏氟乙烯(PEBA/PVDF)复合膜.考察了复合膜在醋酸正丁酯稀水溶液中的溶胀性能,探讨了浸泡时间、浸泡液温度及浸泡液浓度等因素对溶胀度的影响.通过拉力试验,测试了复合膜的力学性能.通过渗透汽化实验,从醋酸正丁酯稀水溶液中分离出醋酸正丁酯,研究了料液浓度、料液温度等因素对复合膜分离性能的影响.结果显示,复合膜在醋酸正丁酯稀水溶液中具有良好的溶胀性能及渗透汽化性能;40℃下分离质量分数为0.6%的醋酸正丁酯水溶液,渗透通量达到280.43 g/(m2.h),分离因子为308.65.  相似文献   

15.
采用单内皮层中空纤维RAN超滤膜作为基膜,通过动态负压层-层静电吸附法在内皮层上组装聚电解质派对PEI/PAA,制得单内皮层中空纤维聚离子复合膜.研究了支撑层、派对数、负压侧真空度、循环流速等动态组装条件对复合膜渗透汽化性能的影响,考察了复合膜对不同醇/水体系的渗透汽化分离性能.结果表明,当进料液为50℃的质量分数95%异丁醇/水体系时,分离因子达23 731,渗透通量为360.5 g/(m2·h),显示了较好的渗透汽化性能.  相似文献   

16.
制备了一系列聚二甲基硅氧烷(PDMS)均质膜,用于渗透汽化法分离甲醇/碳酸二甲酯混合物,此系列PDMS均质膜优先脱除碳酸二甲酯.考查了PDMS均质膜在甲醇和碳酸二甲酯液体中的溶胀性能,并研究了PDMS预聚体的黏度、交联剂浓度、操作温度及料液浓度对渗透汽化分离性能的影响.结果表明,对于不同黏度的PDMS预聚体均表现出随交联剂浓度增加分离因子先增加后减小,而渗透通量则逐渐减小;随操作温度增加分离因子减小而渗透通量增大;随料液中碳酸二甲酯浓度增加分离因子先增加后减小,而渗透通量则逐渐增大.对于碳酸二甲酯浓度为30%的甲醇/碳酸二甲酯混合物,40℃时渗透侧碳酸二甲酯浓度为59.7%,分离因子为3.46,渗透通量为1.41 kg/(m2·h).  相似文献   

17.
以PVDF为支撑层,制备了疏水性二氧化硅(SiO2)填充聚二甲基硅氧烷(SiO2/PDMS)复合膜,通过扫描电镜、接触角测试和热失重分析对复合膜微观形貌、表面疏水性和热性能进行了表征。研究发现,SiO2的加入,可以有效提高PDMS膜的表面疏水性和热稳定性。疏水性SiO2与PDMS基体结合紧密,当SiO2填充低于3%(wt,质量分数,下同)时,纳米粒子在PDMS基体中分散均匀,未发现明显团聚。将复合膜用于渗透汽化乙醇/水体系的分离,发现SiO2的加入,在填充量为1.5%时,SiO2/PDMS复合膜综合分离性能优于纯PDMS膜,尤其是操作温度升高时,与纯PDMS膜相比,复合膜分离因子下降幅度较小,而渗透通量增加较快,表现出较好的综合分离性能。  相似文献   

18.
以PVDF超滤膜为支撑层,PEG为分离层,制备了交联PEG/PVDF复合膜,用于环己醇/环己烷的渗透汽化分离,此复合膜优先脱除环己醇.通过傅立叶红外光谱仪对PEG/PVDF复合膜表面进行结构分析,证实交联后PEG复合膜在1 104.63 cm-1有典型的饱和醚键C—O—C的特征吸收峰;从扫描电镜图看出,PEG在PVDF多孔膜表面形成均匀致密的分离层.将PEG/PVDF复合膜应用于环己醇/环己烷体系,考察了料液浓度和操作温度对膜分离性能的影响以及膜的溶胀性和长时间操作下的稳定性.实验结果表明:随操作温度或料液中环己醇浓度的增加膜的分离因子逐渐减小而渗透通量增大.膜在环己醇中的溶胀度小于6%.在环己醇浓度为2.5%,操作温度80℃,72 h长时间操作下PEG/PVDF复合膜的渗透通量为0.46 kg/(m2.h),分离因子为7.30.  相似文献   

19.
采用干湿相转化法制备了聚砜(PSF)中空纤维超滤膜;将PDMS、交联剂、催化剂按一定的比例溶解在正己烷中,采用浸渍法将PDMS溶液涂在PSF中空纤维膜的外表面,制备了PDMS/PSF中空纤维复合膜.在料液温度为50℃、渗透物侧压力lmmHg、料液乙醇含量5%条件下,考察了涂膜液中PDMS浓度、交联剂、催化剂用量以及涂膜次数等因素对膜渗透汽化性能的影响.  相似文献   

20.
用干湿相转化法制备聚醚砜(PES)中空纤维超滤膜,用不同的涂膜方式将聚二甲基硅氧烷(PDMS)溶液涂在经乙醇和正己烷处理过的PES中空纤维底膜的外表面或内表面,制备PDMs/PES中空纤维复合膜,在渗透物侧压力133.33 Pa,通过5%的乙醇-水溶液考察底膜后处理、涂膜方式等因素对膜渗透汽化性能的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号