共查询到20条相似文献,搜索用时 9 毫秒
1.
以聚乙烯吡咯烷酮(PVP)、钛酸四正丁酯(TNBT)和溶剂丙酮为主要原料,采用静电纺丝法制备PVP/钛酸四正丁酯复合纳米纤维,经过煅烧最终得到多孔结构TiO2纳米纤维。然后分别通过扫描电子显微镜(SEM)、X射线衍射(XRD)、热重分析(TG)、差示扫描量热仪(DSC)和比表面积(BET)测试手段对该材料进行形貌、结构等表征。最后,以亚甲基蓝为目标污染物,在模拟紫外线照射的条件下,研究其光催化剂活性。结果表明,经700℃煅烧后得到的TiO2纳米纤维光催化活性最好,3h后降解效率达到95.2%。 相似文献
2.
采用静电纺丝法制得La2CoFeO6竹节状中空纳米纤维光催化材料。La2CoFeO6纳米纤维具有稳定的一维结构, 由菱形晶型的La2CoFeO6纳米颗粒相互连接组成, 并存在明显的竹节状中空结构, 其比表面积可达98.7 m2/g。La2CoFeO6纳米纤维对自然光具有较高的利用率, 其禁带宽度为1.6 eV。在甲基橙溶液浓度为10 mg/L, pH为2, 催化剂用量为1.5 g/L条件下, 自然光光照2 h后, La2CoFeO6纳米纤维对甲基橙的降解率可达96.9%。 相似文献
3.
以聚乙烯吡咯烷酮(PVP)、钛酸四正丁酯(TBT)和乙醇溶剂为主要原料,采用静电纺丝法制备TBT与PVP质量比为9:1的TBT/PVP复合纳米纤维,经过不同温度煅烧得到TiO2米纤维。分别通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和热重分析(TG)等测试手段对该材料进行形貌、结构等表征。最后,以亚甲基蓝为目标污染物,在模拟紫外线照射的条件下,研究其光催化活性。结果表明:经600℃煅烧后得到的TiO2米纤维具有最好的光催化活性,降解6h后光催化效率为95.5%。 相似文献
4.
钇或钕掺杂TiO_2纳米纤维的制备及光催化性能研究 总被引:2,自引:0,他引:2
采用静电纺丝技术,以Ti(SO4)2、聚乙烯吡咯烷酮(PVP,Mr=1300000)、稀土氧化物和N,N-二甲基甲酰胺(DMF)为原料,成功地制备了TiO2、Y/TiO2和Nd/TiO2纳米纤维.用XRD、FESEM、TEM和TG-DTA等分析手段对样品进行了表征.XRD分析结果表明,当焙烧温度为550℃时得到纯锐钛矿相RE/TiO2(RE=Y,Nd)纳米纤维,900℃时得到纯金红石型RE/TiO2(RE=Y,Nd)纳米纤维,稀土离子显著降低了TiO2的晶格参数.FESEM分析结果表明,RE/TiO2(RE=Y,Nd)纳米纤维直径约为50nm、长度300μm.以罗丹明B和苯酚为目标降解物,研究了三种催化剂的光催化性能.其中,1.5mol%Y/TiO2光催化剂对罗丹明B的降解效率较高,而1.0mol%Nd/TiO2对苯酚具有较好的降解活性.因此,掺杂不同稀土离子的TiO2纳米纤维对不同降解物的降解能力不同. 相似文献
5.
结合溶胶-凝胶、静电纺丝和高温煅烧的技术与原理,制备了TiO2纳米纤维,然后将研磨后的TiO2纳米纤维与PA6切片在双螺杆挤出机中进行共混、熔融纺丝制备出PA6基复合长丝。利用TEM、SEM表征了TiO2纳米纤维的结构形貌,通过视频显微镜观察了PA6基复合长丝的形貌,利用差式扫描量热仪(DSC)和流变仪对复合长丝的结晶性能及流变性能进行了测试分析,并且利用纤维强力测试仪对PA6基复合长丝的力学性能进行了测试。结果表明,当TiO2纳米纤维含量较低时PA6复合长丝的结晶度有所提高,剪切粘度变大,断裂强度有所提高。 相似文献
6.
以聚乙烯吡咯烷酮(PVP)为络合剂与钛酸异丙酯、醋酸锌混合制得前驱体溶液,用静电纺丝法制得PVP/Ti(OCH(CH3)2)4/Zn(CH3COO)2复合纳米纤维,经700℃煅烧后,生成直径约300~400nm的Zn掺杂TiO2复合纳米纤维。研究结果表明,前躯体溶液的浓度、纺丝电压和接收距离对纤维的形貌和结构有较大的影响。通过差热-热重分析、红外光谱、扫描电镜、粉末X射线衍射等手段对纳米纤维进行了表征。在日光照射下以Zn掺杂TiO2复合纳米纤维光降解亚甲基蓝溶液,光降解效率优于TiO2纳米纤维。 相似文献
7.
张闪闪王娇娜刘廷岳等 《化工新型材料》2014,(2):26-28,68
采用静电纺丝法和水热法,成功地制备了PA6/FexOy复合纳米纤维膜,并对其除铬性能进行了研究。红外光谱(FT-IR)、扫描电镜(SEM)、X-射线衍射(XRD)的表征结果显示:有分层结构的晶体氧化铁(FexOy)在PA6纳米纤维上生成。除铬实验结果表明:所制备的复合纳米纤维膜具有优良的除铬性能,最佳除铬温度是24℃,吸附过程是符合Freundlich等温吸附模型的多分子层吸附,吸附效果较好。因此,该研究为除去废水中六价铬提供了一种高效吸附剂,也为环境修复领域提供了一种了简单、高效的新方法。 相似文献
8.
采用静电纺丝法和后续的热处理工艺制备不同浓度Co纳米粒子掺杂的碳纳米纤维。通过差热-热重(DSC-TGA)仪、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、矢量网络分析仪(VNA)对复合碳纳米纤维的热稳定性、物相、微观结构、电磁参数进行表征,并对其微波吸收性能进行研究。结果表明:当炭化温度为800℃时,复合纳米纤维结晶度适中,无定形碳部分转化为石墨相碳,CoAc_2全部被炭化还原为面心立方结构的金属Co纳米粒子,且纤维形貌完整,有串珠状结构存在于纤维网络之间;掺杂后碳纤维电磁性能得到明显改善,当掺杂量为7%(质量分数),涂层厚度为1.5mm时,有效吸收带宽达到最大,为4.5GHz,相比于纯碳纳米纤维,吸波性能得到显著提升。 相似文献
9.
基于单喷射静电纺丝法建立掺杂石墨烯粉末的聚丙烯腈(PAN)纳米纤维复合薄膜的制备方法,研究石墨烯粉末的种类、掺杂量等因素对复合薄膜微观结构的影响。结果表明:石墨烯粉末片径越小、片层数量越少、掺杂量越高,越有利于减小纳米纤维的平均直径;通过优化纺丝前驱体溶液的制备工艺,可降低石墨烯片粒径,将石墨烯的掺杂质量分数提升至7%,制备的复合薄膜的纳米纤维直径也会减少,相对于未添加石墨烯的薄膜,减小幅度达到34.0%。该制备方法利于得到纤维直径更小的PAN薄膜,降低薄膜的孔径,提高薄膜的力学性能,提升对超细颗粒物的过滤效果。 相似文献
10.
采用对喷静电纺丝法制备了PVP/TiO2/TPEE/Zn(CH3COO)2纳米纤维,分别在500℃、550℃、600℃、650℃和700℃煅烧5h,得到不同煅烧温度下的TiO2/ZnTiO3复合纳米纤维光催化剂,利用热重-差热分析法(TG-DTA)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)对样品进行了表征,并研究了该催化剂在300W的紫外灯下催化亚甲基蓝(MB)降解的活性.结果表明,当煅烧温度为550℃时,TiO2/ZnTiO3复合纳米纤维催化剂的光催化活性最高. 相似文献
11.
12.
13.
14.
采用本实验室自行组装的静电纺丝装置制备了热塑性聚酯弹性体(Thermoplastice Ester Elastomer,简称TPEE)的纳米纤维无纺布,固定固化距离,通过控制纺丝电压、溶液浓度及溶液压力,进行了该体系纺丝状态的探索,然后采用扫描电子显微镜(SEM)及X射线衍射仪(XRD)对该无纺布的微观形貌及结晶行为进行了表征.同时采用SANS拉伸仪于室温下对TPEE进行了单轴拉伸试验,采用TG-DTA热分析仪对其耐热性能进行了表征测试. 相似文献
15.
采用单针头静电纺丝技术,结合浓碱水热处理及煅烧过程制备出了具有特殊形貌的一维二氧化钛(TiO2)纳米纤维。通过SEM、BET、XRD和UV-Vis DRS等对其形貌、比表面积、晶型和吸光性能进行了表征。结果表明处理后纳米纤维具有"毛刺"状的特殊形貌,其比表面积随着煅烧温度的升高而降低,得到的TiO2纳米纤维为锐钛矿相。以罗丹明B为降解源,通过1h全波段光照降解实验结果表明,浓碱处理后煅烧温度为500℃时降解率最高,可达94.3%,是未处理TiO2纳米纤维的1.33倍。 相似文献
16.
采用静电纺丝制备的一维氧化锌(ZnO)纳米纤维是一种常见的可用于光催化降解有机染料和重金属离子污染物的半导体光催化剂。然而已报道的纳米纤维表面较为光滑,光催化能力有待进一步提高。本研究以硝酸锌为锌源,乙醇和N,N-二甲基甲酰胺作为混合溶剂,利用静电纺丝和高温煅烧合成了表面和内部同时具有丰富孔洞的树皮状ZnO纳米纤维,并研究了其对亚甲基蓝和Cr(Ⅵ)的光催化降解性能。通过调节纺丝液中锌源的浓度,得到了不同结构的ZnO光催化剂。X射线衍射仪、扫描和透射电子显微镜测试结果表明,所制备的ZnO纳米纤维高度结晶,纤维表面均匀分布有片状结构。光催化测试表明,经过3h紫外光照射后,树皮状ZnO纳米纤维对亚甲基蓝和Cr(Ⅵ)的降解效率分别达93.6%和63.4%。 相似文献
17.
多孔TiO2纳米纤维的制备及其对染料废水的光催化降解性能研究 总被引:1,自引:0,他引:1
以钛酸四正丁酯(TBT)为原料,结合溶胶-凝胶、静电纺丝和高温炭化的技术与原理,制得实心二氧化钛(TiO_2)纳米纤维,并通过添加不同含量的致孔剂偶氮二甲酸二异丙酯(DIPA)制得多孔TiO_2纳米纤维。并对多孔TiO_2纳米纤维的形貌与晶型结构进行了表征与分析。研究结果表明,经煅烧后制得的实心和多孔TiO_2纳米纤维分别为金红石型和锐钛矿型结构;在DIPA用量为5%(wt,质量分数)制得的多孔TiO_2纳米纤维用量50mg,在50mL亚甲基蓝溶液,光照3h条件下,对亚甲基蓝溶液的降解率最高达到91.5%。 相似文献
18.
以甲酸和二氯甲烷为溶剂,采用静电纺丝法一步法制备了尼龙66/有机蒙脱土纳米复合纤维。采用扫描电镜观测了纳米纤维的形貌和直径,尼龙66和尼龙66/有机蒙脱土纳米复合纤维的平均直径分别为(67±18)nm和(63±13)nm。傅里叶红外谱图显示尼龙66和蒙脱土之间出现了氢键结合。热失重分析表明,当蒙脱土与尼龙66的质量比为1∶100时,尼龙66/蒙脱土纳米复合纤维的起始分解温度和热分解峰值温度分别提高了26℃和39℃;紫外老化性能测试表明蒙脱土的片层阻隔效应使尼龙66/蒙脱土纳米复合纤维显示出更好的耐紫外老化性能;吸水率实验表明蒙脱土的加入使纳米纤维的吸水率下降了67.3%,耐水解性能提高。静电纺丝是一种可以制备性能更优越的尼龙66/粘土纳米复合材料的方法。 相似文献
19.
以静电纺丝技术制备的TiO2纳米纤维为模板和反应物, 采用水热法原位合成了具有异质结构的BaTiO3/TiO2复合纳米纤维。利用X射线衍射(XRD)、扫描电镜(SEM) 和高分辨透射电镜(HRTEM)等分析测试手段对样品的结构和形貌进行表征。结果表明: BaTiO3纳米微粒均匀地生长在TiO2纳米纤维表面, 制备了异质结型BaTiO3/TiO2复合纳米纤维。材料的光催化性能利用罗丹明B和苯酚的脱色降解反应测试。BaTiO3/TiO2复合纳米纤维材料, 在紫外光照射下, 光催化降解活性较纯锐钛矿TiO2纳米纤维有明显提高, 罗丹明B和苯酚在该复合纳米纤维材料上的光催化降解反应遵循一级反应动力学。且易于分离、回收和再利用, 循环使用5次, 罗丹明B的脱色率仍保持在96%以上。 相似文献
20.
采用静电纺丝技术, 以聚乙烯醇(PVA)和醋酸锌[Zn(CH3COO)2]为前驱体, 制备纯ZnO纳米纤维, 并以其为基质, 醋酸镍为镍源, 通过溶剂热法制备了NiO/ZnO复合纳米纤维. 利用X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)和荧光光谱(PL)等分析测试手段对样品的结构和形貌进行表征。以罗丹明B的脱色降解为模式反应, 考察了样品的光催化性能。结果表明: NiO粒子均匀地负载到ZnO纳米纤维上, 得到了异质结型NiO/ZnO复合纳米纤维光催化材料, 与纯ZnO纳米纤维相比光催化活性明显提高, 且易于分离、回收和再利用。循环使用3次, RB的脱色率仍保持在89%以上。 相似文献